Cargando…
Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration
The corticospinal tract (CST) is the most important motor system in humans, yet robust regeneration of this projection after spinal cord injury (SCI) has not been accomplished. In rodent models of SCI, we report robust corticospinal axon regeneration, functional synapse formation and improved skille...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860037/ https://www.ncbi.nlm.nih.gov/pubmed/27019328 http://dx.doi.org/10.1038/nm.4066 |
_version_ | 1782431024844636160 |
---|---|
author | Kadoya, Ken Lu, Paul Nguyen, Kenny Lee-Kubli, Corinne Kumamaru, Hiromi Yao, Lin Knackert, Joshua Poplawski, Gunnar Dulin, Jennifer Strobl, Hans Takashima, Yoshio Biane, Jeremy Conner, James Zhang, Su-Chun Tuszynski, Mark H. |
author_facet | Kadoya, Ken Lu, Paul Nguyen, Kenny Lee-Kubli, Corinne Kumamaru, Hiromi Yao, Lin Knackert, Joshua Poplawski, Gunnar Dulin, Jennifer Strobl, Hans Takashima, Yoshio Biane, Jeremy Conner, James Zhang, Su-Chun Tuszynski, Mark H. |
author_sort | Kadoya, Ken |
collection | PubMed |
description | The corticospinal tract (CST) is the most important motor system in humans, yet robust regeneration of this projection after spinal cord injury (SCI) has not been accomplished. In rodent models of SCI, we report robust corticospinal axon regeneration, functional synapse formation and improved skilled forelimb function after grafting multipotent neural progenitor cells into sites of spinal cord injury. Corticospinal regeneration requires that grafts are driven toward caudalized (spinal cord), rather than rostralized, fates. Fully mature caudalized neural grafts also support corticospinal regeneration. Moreover, corticospinal axons can emerge from neural grafts and regenerate beyond the lesion, potentially related to attenuation of the glial scar. Rodent corticospinal axons also regenerate into human donor grafts of caudal spinal cord identity. Collectively, these findings indicate that spinal cord “replacement” with homologous neural stem cells enables robust regeneration of the corticospinal projection within and beyond spinal cord lesion sites, achieving a major unmet goal of spinal cord injury research and opening new possibilities for translation. |
format | Online Article Text |
id | pubmed-4860037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-48600372016-09-28 Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration Kadoya, Ken Lu, Paul Nguyen, Kenny Lee-Kubli, Corinne Kumamaru, Hiromi Yao, Lin Knackert, Joshua Poplawski, Gunnar Dulin, Jennifer Strobl, Hans Takashima, Yoshio Biane, Jeremy Conner, James Zhang, Su-Chun Tuszynski, Mark H. Nat Med Article The corticospinal tract (CST) is the most important motor system in humans, yet robust regeneration of this projection after spinal cord injury (SCI) has not been accomplished. In rodent models of SCI, we report robust corticospinal axon regeneration, functional synapse formation and improved skilled forelimb function after grafting multipotent neural progenitor cells into sites of spinal cord injury. Corticospinal regeneration requires that grafts are driven toward caudalized (spinal cord), rather than rostralized, fates. Fully mature caudalized neural grafts also support corticospinal regeneration. Moreover, corticospinal axons can emerge from neural grafts and regenerate beyond the lesion, potentially related to attenuation of the glial scar. Rodent corticospinal axons also regenerate into human donor grafts of caudal spinal cord identity. Collectively, these findings indicate that spinal cord “replacement” with homologous neural stem cells enables robust regeneration of the corticospinal projection within and beyond spinal cord lesion sites, achieving a major unmet goal of spinal cord injury research and opening new possibilities for translation. 2016-03-28 2016-05 /pmc/articles/PMC4860037/ /pubmed/27019328 http://dx.doi.org/10.1038/nm.4066 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Kadoya, Ken Lu, Paul Nguyen, Kenny Lee-Kubli, Corinne Kumamaru, Hiromi Yao, Lin Knackert, Joshua Poplawski, Gunnar Dulin, Jennifer Strobl, Hans Takashima, Yoshio Biane, Jeremy Conner, James Zhang, Su-Chun Tuszynski, Mark H. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration |
title | Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration |
title_full | Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration |
title_fullStr | Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration |
title_full_unstemmed | Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration |
title_short | Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration |
title_sort | spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860037/ https://www.ncbi.nlm.nih.gov/pubmed/27019328 http://dx.doi.org/10.1038/nm.4066 |
work_keys_str_mv | AT kadoyaken spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT lupaul spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT nguyenkenny spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT leekublicorinne spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT kumamaruhiromi spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT yaolin spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT knackertjoshua spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT poplawskigunnar spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT dulinjennifer spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT stroblhans spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT takashimayoshio spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT bianejeremy spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT connerjames spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT zhangsuchun spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration AT tuszynskimarkh spinalcordreconstitutionwithhomologousneuralgraftsenablesrobustcorticospinalregeneration |