Cargando…
Vaspin regulates the osteogenic differentiation of MC3T3-E1 through the PI3K-Akt/miR-34c loop
Vaspin (visceral adipose tissue-derived serine protease inhibitor) is a newly discovered adipokine that widely participates in diabetes mellitus, polycystic ovarian syndrome and other disorders of metabolism. However, the effect of vaspin on the regulation of osteogenesis and the mechanism responsib...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860647/ https://www.ncbi.nlm.nih.gov/pubmed/27156573 http://dx.doi.org/10.1038/srep25578 |
Sumario: | Vaspin (visceral adipose tissue-derived serine protease inhibitor) is a newly discovered adipokine that widely participates in diabetes mellitus, polycystic ovarian syndrome and other disorders of metabolism. However, the effect of vaspin on the regulation of osteogenesis and the mechanism responsible are still unclear. Here, we found that vaspin can attenuate the osteogenic differentiation of the preosteoblast cell line MC3T3-E1 in a dose-dependent way; also, during this process, the expression of miRNA-34c (miR-34c) was significantly increased. Down-regulation of the expression of miR-34c in MC3T3-E1 diminished the osteogenic inhibitory effect of vaspin, while the up-regulation of miR-34c increased this effect through its target gene Runx2. Meanwhile, we found that vaspin could also activate the PI3K-Akt signalling pathway. Blocking the PI3K-Akt signalling pathway with specific inhibitors could decrease the osteogenic inhibitory effect of vaspin as well as the expression level of miR-34c. Furthermore, knock-down of miR-34c could promote the activation of Akt, which was probably realised by targeting c-met expression. Thus, PI3K-Akt and miR-34c constituted a modulation loop and controlled the expression of each other. Taken together, our study showed that vaspin could inhibit the osteogenic differentiation in vitro, and the PI3K-Akt/miR-34c loop might be the underlying mechanism. |
---|