Cargando…
Prognostic Significance of Forkhead Box M1 (FOXM1) Expression and Antitumor Effect of FOXM1 Inhibition in Angiosarcoma
Background: The prognosis of angiosarcoma is poor and a novel treatment option for the disease is desired. The aim of this study was to investigate the prognostic significance of Forkhead box M1 (FOXM1), a transcription factor that regulates cell-cycle progression and various crucial processes in tu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860799/ https://www.ncbi.nlm.nih.gov/pubmed/27162541 http://dx.doi.org/10.7150/jca.14461 |
Sumario: | Background: The prognosis of angiosarcoma is poor and a novel treatment option for the disease is desired. The aim of this study was to investigate the prognostic significance of Forkhead box M1 (FOXM1), a transcription factor that regulates cell-cycle progression and various crucial processes in tumor progression, and its potential as a new therapeutic target. Methods: We investigated 125 angiosarcoma clinical samples (94 primary lesions and 31 metastatic lesions in 94 patients) and a human angiosarcoma cell line (HAMON) using immunohistochemical staining and molecular biological approaches. FOXM1 expression in angiosarcoma samples was also compared with that in Kaposi's sarcomas (n = 13), epithelioid hemangioendotheliomas (n = 13) and benign hemangiomas (n = 10). Results: Patients with FOXM1-overexpressing angiosarcoma had significantly shorter survival (both for disease-specific survival [DSS] and event-free survival [EFS]) than other patients (5-year DSS, 23.5% vs. 47.1%, P = 0.013; and 5-year EFS, 5.5% vs. 28.7%, P = 0.004). FOXM1 overexpression was also an independent prognostic factor for both DSS and EFS in Cox multivariate analyses (hazard ratio [HR] 2.84, 95% confidence interval [CI] 1.10-5.81, P = 0.039; and HR 4.16, 95%CI 2.03-8.67, P = 0.0001, respectively). FOXM1 inhibition using both small interfering RNA and a specific inhibitor (thiostrepton) suppressed cell proliferation of the angiosarcoma cell line. Furthermore, FOXM1 inhibition improved the chemosensitivity to docetaxel in vitro. Conclusions: FOXM1 inhibition may be a potential therapeutic option for angiosarcoma. |
---|