Cargando…

High intensity interval training in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation in physically active men

Aim. The purpose of this study was to determine the response of circulating markers of lipid and protein oxidation following an incremental test to exhaustion before and after 4 weeks of high-intensity interval training performed in the heat. Methods. To address this question, 16 physically active m...

Descripción completa

Detalles Bibliográficos
Autores principales: Souza-Silva, Ana Angélica, Moreira, Eduardo, de Melo-Marins, Denise, Schöler, Cinthia M., de Bittencourt, Paulo Ivo Homem, Laitano, Orlando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861192/
https://www.ncbi.nlm.nih.gov/pubmed/27227083
http://dx.doi.org/10.1080/23328940.2015.1132101
Descripción
Sumario:Aim. The purpose of this study was to determine the response of circulating markers of lipid and protein oxidation following an incremental test to exhaustion before and after 4 weeks of high-intensity interval training performed in the heat. Methods. To address this question, 16 physically active men (age = 23 ± 2 years; body mass = 73 ± 12 kg; height = 173 ± 6 cm; % body fat = 12.5 ± 6 %; body mass index = 24 ± 4 kg/m(2)) were allocated into 2 groups: control group (n = 8) performing high-intensity interval training at 22°C, 55% relative humidity and heat group (n = 8) training under 35°C, 55% relative humidity. Both groups performed high-intensity interval training 3 times per week for 4 consecutive weeks, accumulating a total of 12 training sessions. Before and after the completion of 4 weeks of high-intensity interval training, participants performed an incremental cycling test until exhaustion under temperate environment (22°C, 55% relative humidity) where blood samples were collected after the test for determination of exercise-induced changes in oxidative damage biomarkers (thiobarbituric acid reactive species and protein carbonyls). Results. When high-intensity interval training was performed under control conditions, there was an increase in protein carbonyls (p < 0.05) following the incremental test to exhaustion with no changes in thiobarbituric acid reactive species. Conversely, high-intensity interval training performed in high environmental temperature enhanced the incremental exercise-induced increases in thiobarbituric acid reactive species (p < 0.05) with no changes in protein carbonyls. Conclusion. In conclusion, 4 weeks of high-intensity interval training performed in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation following a maximal incremental exercise in healthy active men.