Cargando…
Identification of genetic interaction networks via an evolutionary algorithm evolved Bayesian network
BACKGROUND: The future of medicine is moving towards the phase of precision medicine, with the goal to prevent and treat diseases by taking inter-individual variability into account. A large part of the variability lies in our genetic makeup. With the fast paced improvement of high-throughput method...
Autores principales: | Li, Ruowang, Dudek, Scott M., Kim, Dokyoon, Hall, Molly A., Bradford, Yuki, Peissig, Peggy L., Brilliant, Murray H., Linneman, James G., McCarty, Catherine A., Bao, Le, Ritchie, Marylyn D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862166/ https://www.ncbi.nlm.nih.gov/pubmed/27168765 http://dx.doi.org/10.1186/s13040-016-0094-4 |
Ejemplares similares
-
ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network
por: Kim, Dokyoon, et al.
Publicado: (2013) -
PLATO software provides analytic framework for investigating complexity beyond genome-wide association studies
por: Hall, Molly A., et al.
Publicado: (2017) -
Epistatic Gene-Based Interaction Analyses for Glaucoma in eMERGE and NEIGHBOR Consortium
por: Verma, Shefali Setia, et al.
Publicado: (2016) -
Knowledge-driven genomic interactions: an application in ovarian cancer
por: Kim, Dokyoon, et al.
Publicado: (2014) -
Knowledge-Driven Multi-Locus Analysis Reveals Gene-Gene Interactions Influencing HDL Cholesterol Level in Two Independent EMR-Linked Biobanks
por: Turner, Stephen D., et al.
Publicado: (2011)