Cargando…

Detection of cancer cells using SapC-DOPS nanovesicles

Unlike normal cells, cancer cells express high levels of phosphatidylserine on the extracellular leaflet of their cell membrane. Exploiting this characteristic, our lab developed a therapeutic agent that consists of the fusogenic protein, saposin C (SapC) which is embedded in dioleoylphosphatidylser...

Descripción completa

Detalles Bibliográficos
Autores principales: Davis, Harold W., Hussain, Nida, Qi, Xiaoyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862232/
https://www.ncbi.nlm.nih.gov/pubmed/27160923
http://dx.doi.org/10.1186/s12943-016-0519-1
Descripción
Sumario:Unlike normal cells, cancer cells express high levels of phosphatidylserine on the extracellular leaflet of their cell membrane. Exploiting this characteristic, our lab developed a therapeutic agent that consists of the fusogenic protein, saposin C (SapC) which is embedded in dioleoylphosphatidylserine (DOPS) vesicles. These nanovesicles selectively target cancer cells and induce apoptosis. Here we review the data supporting use of SapC-DOPS to locate tumors for surgical resection or for treatment. In addition, there is important evidence suggesting that SapC-DOPS may also prove to be an effective novel cancer therapeutic reagent. Given that SapC-DOPS is easily labeled with lipophilic dyes, it has been combined with the far-red fluorescent dye, CellVue Maroon (CVM), for tumor targeting studies. We also have used contrast agents incorporated in the SapC-DOPS nanovesicles for computed tomography and magnetic resonance imaging, and review that data here. Administered intravenously, the fluorescently labeled SapC-DOPS traversed the blood–brain tumor barrier enabling identification of brain tumors. SapC-DOPS-CVM also detected a variety of other mouse tumors in vivo, rendering them observable by optical imaging using IVIS and multi-angle rotational optical imaging. Dye is detected within 30 min and remains within tumor for at least 7 days, whereas non-tumor tissues were unstained (some dye observed in the liver was transient, likely representing degradation products). Additionally, labeled SapC-DOPS ex vivo delineated tumors in human histological specimens. SapC-DOPS can also be labeled with contrast reagents for computed tomography or magnetic resonance imaging. In conclusion, labeled SapC-DOPS provides a convenient, specific, and nontoxic method for detecting tumors while concurrently offering a therapeutic benefit.