Cargando…

Uracil-induced signaling pathways for DUOX-dependent gut immunity

Intestinal dual oxidase (DUOX) activation is the first line of host defense against enteric infection in Drosophila. DUOX enzymatic activity is mainly controlled by phospholipase C-β (PLCβ)-dependent calcium mobilization, whereas DUOX gene expression is mainly controlled by the MEKK1-p38 mitogen-act...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Kyung-Ah, Kim, Boram, You, Hyejin, Lee, Won-Jae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862428/
https://www.ncbi.nlm.nih.gov/pubmed/26655037
http://dx.doi.org/10.1080/19336934.2015.1126011
Descripción
Sumario:Intestinal dual oxidase (DUOX) activation is the first line of host defense against enteric infection in Drosophila. DUOX enzymatic activity is mainly controlled by phospholipase C-β (PLCβ)-dependent calcium mobilization, whereas DUOX gene expression is mainly controlled by the MEKK1-p38 mitogen-activated protein kinase pathway. Furthermore, bacterial-derived uracil molecules act as ligands for DUOX activation. However, our current understanding of uracil-induced signal transduction pathways remain incomplete. We have recently found that uracil stimulates Hedgehog signaling, which in turn upregulates cadherin99C (Cad99C) expression in enterocytes. Cad99C molecules, along with PLCβ and protein kinase C, induce the formation of signaling endosomes that facilitate intracellular calcium mobilization for DUOX activity. These observations illustrate the complexity of signaling cascades in uracil-induced signaling pathways. Here, we further demonstrated the role of lipid raft formation and calmodulin-dependent protein kinase-II on endosome formation and calcium mobilization, respectively. Moreover, we will provide a brief discussion on two different models for uracil recognition and uracil-induced DUOX activation in Drosophila enterocytes.