Cargando…

Transfer Calibration Validation Tests on a Heat Flux Sensor in the 51 mm High-Temperature Blackbody

Facilities and techniques to characterize heat flux sensors are under development at the National Institute of Standards and Technology. As a part of this effort, a large aperture high-temperature blackbody was commissioned recently. The graphite tube blackbody, heated electrically, has a cavity dia...

Descripción completa

Detalles Bibliográficos
Autores principales: Murthy, A. V., Tsai, B. K., Saunders, R. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862819/
https://www.ncbi.nlm.nih.gov/pubmed/27500049
http://dx.doi.org/10.6028/jres.106.039
Descripción
Sumario:Facilities and techniques to characterize heat flux sensors are under development at the National Institute of Standards and Technology. As a part of this effort, a large aperture high-temperature blackbody was commissioned recently. The graphite tube blackbody, heated electrically, has a cavity diameter of 51 mm and can operate up to a maximum temperature of 2773 K. A closed-loop cooling system using a water-to-water heat exchanger cools electrodes and the outer reflecting shield. This paper describes the newly developed blackbody facility and the validation tests conducted using a reference standard Schmidt-Boelter heat flux sensor. The transfer calibration results obtained on the Schmidt-Boelter sensor agreed with the previous data within the experimental uncertainty limits.