Cargando…

Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions

Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mo, Yanling, Wang, Yongqi, Yang, Ruiping, Zheng, Junxian, Liu, Changming, Li, Hao, Ma, Jianxiang, Zhang, Yong, Wei, Chunhua, Zhang, Xian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862978/
https://www.ncbi.nlm.nih.gov/pubmed/27242845
http://dx.doi.org/10.3389/fpls.2016.00644
_version_ 1782431408347676672
author Mo, Yanling
Wang, Yongqi
Yang, Ruiping
Zheng, Junxian
Liu, Changming
Li, Hao
Ma, Jianxiang
Zhang, Yong
Wei, Chunhua
Zhang, Xian
author_facet Mo, Yanling
Wang, Yongqi
Yang, Ruiping
Zheng, Junxian
Liu, Changming
Li, Hao
Ma, Jianxiang
Zhang, Yong
Wei, Chunhua
Zhang, Xian
author_sort Mo, Yanling
collection PubMed
description Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H(2)O(2) and [Formula: see text] compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes to advances in the knowledge of AM-induced drought tolerance.
format Online
Article
Text
id pubmed-4862978
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-48629782016-05-30 Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions Mo, Yanling Wang, Yongqi Yang, Ruiping Zheng, Junxian Liu, Changming Li, Hao Ma, Jianxiang Zhang, Yong Wei, Chunhua Zhang, Xian Front Plant Sci Plant Science Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H(2)O(2) and [Formula: see text] compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes to advances in the knowledge of AM-induced drought tolerance. Frontiers Media S.A. 2016-05-11 /pmc/articles/PMC4862978/ /pubmed/27242845 http://dx.doi.org/10.3389/fpls.2016.00644 Text en Copyright © 2016 Mo, Wang, Yang, Zheng, Liu, Li, Ma, Zhang, Wei and Zhang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Mo, Yanling
Wang, Yongqi
Yang, Ruiping
Zheng, Junxian
Liu, Changming
Li, Hao
Ma, Jianxiang
Zhang, Yong
Wei, Chunhua
Zhang, Xian
Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions
title Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions
title_full Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions
title_fullStr Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions
title_full_unstemmed Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions
title_short Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions
title_sort regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862978/
https://www.ncbi.nlm.nih.gov/pubmed/27242845
http://dx.doi.org/10.3389/fpls.2016.00644
work_keys_str_mv AT moyanling regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions
AT wangyongqi regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions
AT yangruiping regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions
AT zhengjunxian regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions
AT liuchangming regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions
AT lihao regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions
AT majianxiang regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions
AT zhangyong regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions
AT weichunhua regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions
AT zhangxian regulationofplantgrowthphotosynthesisantioxidationandosmosisbyanarbuscularmycorrhizalfungusinwatermelonseedlingsunderwellwateredanddroughtconditions