Cargando…

Neuropilin-1(high)CD4(+)CD25(+) Regulatory T Cells Exhibit Primary Negative Immunoregulation in Sepsis

Regulatory T cells (Tregs) appear to be involved in sepsis-induced immune dysfunction; neuropilin-1 (Nrp-1) was identified as a surface marker for CD4(+)CD25(+)Tregs. In the current study, we investigated the negative immunoregulation of Nrp-1(high)CD4(+)CD25(+)Tregs and the potential therapeutic va...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Yu-Lei, Chai, Yan-Fen, Qi, An-Long, Yao, Ying, Liu, Yan-Cun, Dong, Ning, Wang, Li-Jun, Yao, Yong-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863118/
https://www.ncbi.nlm.nih.gov/pubmed/27239104
http://dx.doi.org/10.1155/2016/7132158
Descripción
Sumario:Regulatory T cells (Tregs) appear to be involved in sepsis-induced immune dysfunction; neuropilin-1 (Nrp-1) was identified as a surface marker for CD4(+)CD25(+)Tregs. In the current study, we investigated the negative immunoregulation of Nrp-1(high)CD4(+)CD25(+)Tregs and the potential therapeutic value of Nrp-1 in sepsis. Splenic CD4(+)CD25(+)Tregs from cecal ligation and puncture (CLP) mouse models were further segregated into Nrp-1(high)Tregs and Nrp-1(low)Tregs; they were cocultured with CD4(+)CD25(−)  T cells. The expression of forkhead/winged helix transcription factor-3 (Foxp-3), cytotoxic T-lymphocyte associated antigen-4 (CTLA-4), membrane associated transforming growth factor-β (TGF-β(m+)), apoptotic rate, and secretive ability [including TGF-β and interleukin-10 (IL-10)] for various types of Tregs, as well as the immunosuppressive ability of Tregs on CD4(+)CD25(−)  T cells, were determined. Meanwhile, the impact of recombinant Nrp-1 polyclonal antibody on the demethylation of Foxp-3-TSDR (Treg-specific demethylated region) was measured in in vitro study. Sepsis per se markedly promoted the expression of Nrp-1 of CD4(+)CD25(+)Tregs. Foxp-3/CTLA-4/TGF-β(m+) of Nrp-1(high)Tregs were upregulated by septic challenge. Nrp-1(high)Tregs showed strong resilience to apoptosis and secretive ability and the strongest immunosuppressive ability on CD4(+)CD25(−)  T cells. In the presence of lipopolysaccharide (LPS), the recombinant Nrp-1 polyclonal antibody reduced the demethylation of Foxp-3-TSDR. Nrp-1(high)Tregs might reveal primary negative immunoregulation in sepsis; Nrp-1 could represent a new potential therapeutic target for the study of immune regulation in sepsis.