Cargando…
Microbeam Characterization of Corning Archeological Reference Glasses: New Additions to the Smithsonian Microbeam Standard Collection
An initial study of the minor element, trace element, and impurities in Corning archeological references glasses have been performed using three microbeam techniques: electron probe microanalysis (EPMA), laser ablation ICP-mass spectrometry (LA ICP-MS), and secondary ion mass spectrometry (SIMS). Th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863856/ https://www.ncbi.nlm.nih.gov/pubmed/27446764 http://dx.doi.org/10.6028/jres.107.058 |
Sumario: | An initial study of the minor element, trace element, and impurities in Corning archeological references glasses have been performed using three microbeam techniques: electron probe microanalysis (EPMA), laser ablation ICP-mass spectrometry (LA ICP-MS), and secondary ion mass spectrometry (SIMS). The EPMA results suggest a significant level of heterogeneity for a number of metals. Conversely, higher precision and a larger sampling volume analysis by LA ICP-MS indicates a high degree of chemical uniformity within all glasses, typically <2 % relative (1 σ). SIMS data reveal that small but measurable quantities of volatile impurities are present in the glasses, including H at roughly the 0.0001 mass fraction level. These glasses show promise for use as secondary standards for minor and trace element analyses of insulating materials such as synthetic ceramics, minerals, and silicate glasses. |
---|