Cargando…

Megestrol acetate improves cardiac function in a model of cancer cachexia‐induced cardiomyopathy by autophagic modulation

BACKGROUND: Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catab...

Descripción completa

Detalles Bibliográficos
Autores principales: Musolino, Vincenzo, Palus, Sandra, Tschirner, Anika, Drescher, Cathleen, Gliozzi, Micaela, Carresi, Cristina, Vitale, Cristiana, Muscoli, Carolina, Doehner, Wolfram, von Haehling, Stephan, Anker, Stefan D., Mollace, Vincenzo, Springer, Jochen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864048/
https://www.ncbi.nlm.nih.gov/pubmed/27239419
http://dx.doi.org/10.1002/jcsm.12116
_version_ 1782431571734691840
author Musolino, Vincenzo
Palus, Sandra
Tschirner, Anika
Drescher, Cathleen
Gliozzi, Micaela
Carresi, Cristina
Vitale, Cristiana
Muscoli, Carolina
Doehner, Wolfram
von Haehling, Stephan
Anker, Stefan D.
Mollace, Vincenzo
Springer, Jochen
author_facet Musolino, Vincenzo
Palus, Sandra
Tschirner, Anika
Drescher, Cathleen
Gliozzi, Micaela
Carresi, Cristina
Vitale, Cristiana
Muscoli, Carolina
Doehner, Wolfram
von Haehling, Stephan
Anker, Stefan D.
Mollace, Vincenzo
Springer, Jochen
author_sort Musolino, Vincenzo
collection PubMed
description BACKGROUND: Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catabolic pathways, including autophagy. Cachexia also affects the cardiac muscle. As a consequence of the atrophy of the heart, cardiac function is impaired and mortality is increased. Anti‐cachectic therapy in patients with cancer cachexia is so far limited to nutritional support and anabolic steroids. The use of the appetite stimulant megestrol acetate (MA) has been discussed as a treatment for cachexia. METHODS: In this study the effects of MA were tested in cachectic tumour‐bearing rats (Yoshida AH‐130 ascites hepatoma). Rats were treated daily with 100 mg/kg of MA or placebo starting one day after tumour inoculation, and for a period of 16 days. Body weight and body composition were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and at day 11. Locomotor activity and food intake were assessed before tumour inoculation and at day 11. Autophagic markers were assessed in gastrocnemius muscle and heart by western blot analysis. RESULTS: Treatment with 100 mg/kg/day MA significantly attenuated the loss of body weight (−9 ± 12%, P < 0.05) and the wasting of lean and fat mass (−7.0 ± 6% and −22.4 ± 3 %, P < 0.001 and P < 0.05, respectively). Administration of 100 mg/kg/day MA significantly protected the heart from general atrophy (633.8 ± 30 mg vs. placebo 474 ± 13 mg, P < 0.001). Tumour‐bearing rats displayed cardiac dysfunction, as indicated by the significant impairment of the left ventricular ejection fraction, the left ventricular fractional shortening, the stroke volume, the end dyastolic volume, and the end systolic volume. In contrast, MA significantly improved left ventricular ejection fraction, left ventricular fractional shortening, and left ventricular end systolic volume. Western blotting analysis showed an upregulation of the autophagic pathway in the gastrocnemius and hearts of the placebo‐treated tumour‐bearing rats. Treatment with MA, however, was able to modulate the autophagic markers (e.g. Beclin‐1, p62, TRAF6, and LC3) in the gastrocnemius and in the hearts of tumour‐bearing rats. Most importantly, 100 mg/kg/day MA reduced mortality [hazard ratio (HR): 0.44; 95%CI: 0.20–1.00; P = 0.0486]. CONCLUSIONS: Megestrol acetate improved survival and reduced wasting through a marked downregulation of autophagy, occurring in both skeletal and heart muscle, the latter effect leading to a significant improvement of cardiac function. Our data suggest that MA might represent a valuable strategy to counteract the development of cancer cachexia‐induced cardiomyopathy.
format Online
Article
Text
id pubmed-4864048
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-48640482016-05-27 Megestrol acetate improves cardiac function in a model of cancer cachexia‐induced cardiomyopathy by autophagic modulation Musolino, Vincenzo Palus, Sandra Tschirner, Anika Drescher, Cathleen Gliozzi, Micaela Carresi, Cristina Vitale, Cristiana Muscoli, Carolina Doehner, Wolfram von Haehling, Stephan Anker, Stefan D. Mollace, Vincenzo Springer, Jochen J Cachexia Sarcopenia Muscle Original Articles BACKGROUND: Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catabolic pathways, including autophagy. Cachexia also affects the cardiac muscle. As a consequence of the atrophy of the heart, cardiac function is impaired and mortality is increased. Anti‐cachectic therapy in patients with cancer cachexia is so far limited to nutritional support and anabolic steroids. The use of the appetite stimulant megestrol acetate (MA) has been discussed as a treatment for cachexia. METHODS: In this study the effects of MA were tested in cachectic tumour‐bearing rats (Yoshida AH‐130 ascites hepatoma). Rats were treated daily with 100 mg/kg of MA or placebo starting one day after tumour inoculation, and for a period of 16 days. Body weight and body composition were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and at day 11. Locomotor activity and food intake were assessed before tumour inoculation and at day 11. Autophagic markers were assessed in gastrocnemius muscle and heart by western blot analysis. RESULTS: Treatment with 100 mg/kg/day MA significantly attenuated the loss of body weight (−9 ± 12%, P < 0.05) and the wasting of lean and fat mass (−7.0 ± 6% and −22.4 ± 3 %, P < 0.001 and P < 0.05, respectively). Administration of 100 mg/kg/day MA significantly protected the heart from general atrophy (633.8 ± 30 mg vs. placebo 474 ± 13 mg, P < 0.001). Tumour‐bearing rats displayed cardiac dysfunction, as indicated by the significant impairment of the left ventricular ejection fraction, the left ventricular fractional shortening, the stroke volume, the end dyastolic volume, and the end systolic volume. In contrast, MA significantly improved left ventricular ejection fraction, left ventricular fractional shortening, and left ventricular end systolic volume. Western blotting analysis showed an upregulation of the autophagic pathway in the gastrocnemius and hearts of the placebo‐treated tumour‐bearing rats. Treatment with MA, however, was able to modulate the autophagic markers (e.g. Beclin‐1, p62, TRAF6, and LC3) in the gastrocnemius and in the hearts of tumour‐bearing rats. Most importantly, 100 mg/kg/day MA reduced mortality [hazard ratio (HR): 0.44; 95%CI: 0.20–1.00; P = 0.0486]. CONCLUSIONS: Megestrol acetate improved survival and reduced wasting through a marked downregulation of autophagy, occurring in both skeletal and heart muscle, the latter effect leading to a significant improvement of cardiac function. Our data suggest that MA might represent a valuable strategy to counteract the development of cancer cachexia‐induced cardiomyopathy. John Wiley and Sons Inc. 2016-04-07 2016-12 /pmc/articles/PMC4864048/ /pubmed/27239419 http://dx.doi.org/10.1002/jcsm.12116 Text en © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society of Sarcopenia, Cachexia and Wasting Disorders This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Musolino, Vincenzo
Palus, Sandra
Tschirner, Anika
Drescher, Cathleen
Gliozzi, Micaela
Carresi, Cristina
Vitale, Cristiana
Muscoli, Carolina
Doehner, Wolfram
von Haehling, Stephan
Anker, Stefan D.
Mollace, Vincenzo
Springer, Jochen
Megestrol acetate improves cardiac function in a model of cancer cachexia‐induced cardiomyopathy by autophagic modulation
title Megestrol acetate improves cardiac function in a model of cancer cachexia‐induced cardiomyopathy by autophagic modulation
title_full Megestrol acetate improves cardiac function in a model of cancer cachexia‐induced cardiomyopathy by autophagic modulation
title_fullStr Megestrol acetate improves cardiac function in a model of cancer cachexia‐induced cardiomyopathy by autophagic modulation
title_full_unstemmed Megestrol acetate improves cardiac function in a model of cancer cachexia‐induced cardiomyopathy by autophagic modulation
title_short Megestrol acetate improves cardiac function in a model of cancer cachexia‐induced cardiomyopathy by autophagic modulation
title_sort megestrol acetate improves cardiac function in a model of cancer cachexia‐induced cardiomyopathy by autophagic modulation
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864048/
https://www.ncbi.nlm.nih.gov/pubmed/27239419
http://dx.doi.org/10.1002/jcsm.12116
work_keys_str_mv AT musolinovincenzo megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT palussandra megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT tschirneranika megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT dreschercathleen megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT gliozzimicaela megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT carresicristina megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT vitalecristiana megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT muscolicarolina megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT doehnerwolfram megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT vonhaehlingstephan megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT ankerstefand megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT mollacevincenzo megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation
AT springerjochen megestrolacetateimprovescardiacfunctioninamodelofcancercachexiainducedcardiomyopathybyautophagicmodulation