Cargando…

Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning

[Image: see text] Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polar...

Descripción completa

Detalles Bibliográficos
Autores principales: Cole, Daniel J., Vilseck, Jonah Z., Tirado-Rives, Julian, Payne, Mike C., Jorgensen, William L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864407/
https://www.ncbi.nlm.nih.gov/pubmed/27057643
http://dx.doi.org/10.1021/acs.jctc.6b00027
_version_ 1782431622558121984
author Cole, Daniel J.
Vilseck, Jonah Z.
Tirado-Rives, Julian
Payne, Mike C.
Jorgensen, William L.
author_facet Cole, Daniel J.
Vilseck, Jonah Z.
Tirado-Rives, Julian
Payne, Mike C.
Jorgensen, William L.
author_sort Cole, Daniel J.
collection PubMed
description [Image: see text] Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.
format Online
Article
Text
id pubmed-4864407
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-48644072016-05-13 Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning Cole, Daniel J. Vilseck, Jonah Z. Tirado-Rives, Julian Payne, Mike C. Jorgensen, William L. J Chem Theory Comput [Image: see text] Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme. American Chemical Society 2016-04-08 2016-05-10 /pmc/articles/PMC4864407/ /pubmed/27057643 http://dx.doi.org/10.1021/acs.jctc.6b00027 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Cole, Daniel J.
Vilseck, Jonah Z.
Tirado-Rives, Julian
Payne, Mike C.
Jorgensen, William L.
Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning
title Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning
title_full Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning
title_fullStr Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning
title_full_unstemmed Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning
title_short Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning
title_sort biomolecular force field parameterization via atoms-in-molecule electron density partitioning
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864407/
https://www.ncbi.nlm.nih.gov/pubmed/27057643
http://dx.doi.org/10.1021/acs.jctc.6b00027
work_keys_str_mv AT coledanielj biomolecularforcefieldparameterizationviaatomsinmoleculeelectrondensitypartitioning
AT vilseckjonahz biomolecularforcefieldparameterizationviaatomsinmoleculeelectrondensitypartitioning
AT tiradorivesjulian biomolecularforcefieldparameterizationviaatomsinmoleculeelectrondensitypartitioning
AT paynemikec biomolecularforcefieldparameterizationviaatomsinmoleculeelectrondensitypartitioning
AT jorgensenwilliaml biomolecularforcefieldparameterizationviaatomsinmoleculeelectrondensitypartitioning