Cargando…

Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes

Combining path consistency (PC) algorithms with conditional mutual information (CMI) are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discrimin...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Fei, Gao, Lin, Ye, Yusen, Hu, Yuxuan, He, Ruijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865039/
https://www.ncbi.nlm.nih.gov/pubmed/27171286
http://dx.doi.org/10.1371/journal.pone.0154953
Descripción
Sumario:Combining path consistency (PC) algorithms with conditional mutual information (CMI) are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference), to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise.