Cargando…
A New Ticket-Based Authentication Mechanism for Fast Handover in Mesh Network
Due to the ever-growing popularity mobile devices of various kinds have received worldwide, the demands on large-scale wireless network infrastructure development and enhancement have been rapidly swelling in recent years. A mobile device holder can get online at a wireless network access point, whi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865210/ https://www.ncbi.nlm.nih.gov/pubmed/27171160 http://dx.doi.org/10.1371/journal.pone.0155064 |
Sumario: | Due to the ever-growing popularity mobile devices of various kinds have received worldwide, the demands on large-scale wireless network infrastructure development and enhancement have been rapidly swelling in recent years. A mobile device holder can get online at a wireless network access point, which covers a limited area. When the client leaves the access point, there will be a temporary disconnection until he/she enters the coverage of another access point. Even when the coverages of two neighboring access points overlap, there is still work to do to make the wireless connection smoothly continue. The action of one wireless network access point passing a client to another access point is referred to as the handover. During handover, for security concerns, the client and the new access point should perform mutual authentication before any Internet access service is practically gained/provided. If the handover protocol is inefficient, in some cases discontinued Internet service will happen. In 2013, Li et al. proposed a fast handover authentication mechanism for wireless mesh network (WMN) based on tickets. Unfortunately, Li et al.’s work came with some weaknesses. For one thing, some sensitive information such as the time and date of expiration is sent in plaintext, which increases security risks. For another, Li et al.’s protocol includes the use of high-quality tamper-proof devices (TPDs), and this unreasonably high equipment requirement limits its applicability. In this paper, we shall propose a new efficient handover authentication mechanism. The new mechanism offers a higher level of security on a more scalable ground with the client’s privacy better preserved. The results of our performance analysis suggest that our new mechanism is superior to some similar mechanisms in terms of authentication delay. |
---|