Cargando…
Mining chemical patents with an ensemble of open systems
The significant amount of medicinal chemistry information contained in patents makes them an attractive target for text mining. In this manuscript, we describe systems for named entity recognition (NER) of chemicals and genes/proteins in patents, using the CEMP (for chemicals) and GPRO (for genes/pr...
Autores principales: | Leaman, Robert, Wei, Chih-Hsuan, Zou, Cherry, Lu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865327/ https://www.ncbi.nlm.nih.gov/pubmed/27173521 http://dx.doi.org/10.1093/database/baw065 |
Ejemplares similares
-
tmBioC: improving interoperability of text-mining tools with BioC
por: Khare, Ritu, et al.
Publicado: (2014) -
Mining chemical information from open patents
por: Jessop, David M, et al.
Publicado: (2011) -
Ten tips for a text-mining-ready article: How to improve automated discoverability and interpretability
por: Leaman, Robert, et al.
Publicado: (2020) -
tmChem: a high performance approach for chemical named entity recognition and normalization
por: Leaman, Robert, et al.
Publicado: (2015) -
Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task
por: Wei, Chih-Hsuan, et al.
Publicado: (2016)