Cargando…

Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework

Flexible porous materials generally switch their structures in response to guest removal or incorporation. However, the design of porous materials with empty shape-switchable pores remains a formidable challenge. Here, we demonstrate that the structural transition between an empty orthorhombic phase...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, You-Gui, Shiota, Yoshihito, Wu, Ming-Yan, Su, Sheng-Qun, Yao, Zi-Shuo, Kang, Soonchul, Kanegawa, Shinji, Li, Guo-Ling, Wu, Shu-Qi, Kamachi, Takashi, Yoshizawa, Kazunari, Ariga, Katsuhiko, Hong, Mao-Chun, Sato, Osamu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865851/
https://www.ncbi.nlm.nih.gov/pubmed/27168321
http://dx.doi.org/10.1038/ncomms11564
_version_ 1782431846885228544
author Huang, You-Gui
Shiota, Yoshihito
Wu, Ming-Yan
Su, Sheng-Qun
Yao, Zi-Shuo
Kang, Soonchul
Kanegawa, Shinji
Li, Guo-Ling
Wu, Shu-Qi
Kamachi, Takashi
Yoshizawa, Kazunari
Ariga, Katsuhiko
Hong, Mao-Chun
Sato, Osamu
author_facet Huang, You-Gui
Shiota, Yoshihito
Wu, Ming-Yan
Su, Sheng-Qun
Yao, Zi-Shuo
Kang, Soonchul
Kanegawa, Shinji
Li, Guo-Ling
Wu, Shu-Qi
Kamachi, Takashi
Yoshizawa, Kazunari
Ariga, Katsuhiko
Hong, Mao-Chun
Sato, Osamu
author_sort Huang, You-Gui
collection PubMed
description Flexible porous materials generally switch their structures in response to guest removal or incorporation. However, the design of porous materials with empty shape-switchable pores remains a formidable challenge. Here, we demonstrate that the structural transition between an empty orthorhombic phase and an empty tetragonal phase in a flexible porous dodecatuple intercatenated supramolecular organic framework can be controlled cooperatively through guest incorporation and thermal treatment, thus inducing empty shape-memory nanopores. Moreover, the empty orthorhombic phase was observed to exhibit superior thermoelasticity, and the molecular-scale structural mobility could be transmitted to a macroscopic crystal shape change. The driving force of the shape-memory behaviour was elucidated in terms of potential energy. These two interconvertible empty phases with different pore shapes, that is, the orthorhombic phase with rectangular pores and the tetragonal phase with square pores, completely reject or weakly adsorb N(2) at 77 K, respectively.
format Online
Article
Text
id pubmed-4865851
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48658512016-05-24 Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework Huang, You-Gui Shiota, Yoshihito Wu, Ming-Yan Su, Sheng-Qun Yao, Zi-Shuo Kang, Soonchul Kanegawa, Shinji Li, Guo-Ling Wu, Shu-Qi Kamachi, Takashi Yoshizawa, Kazunari Ariga, Katsuhiko Hong, Mao-Chun Sato, Osamu Nat Commun Article Flexible porous materials generally switch their structures in response to guest removal or incorporation. However, the design of porous materials with empty shape-switchable pores remains a formidable challenge. Here, we demonstrate that the structural transition between an empty orthorhombic phase and an empty tetragonal phase in a flexible porous dodecatuple intercatenated supramolecular organic framework can be controlled cooperatively through guest incorporation and thermal treatment, thus inducing empty shape-memory nanopores. Moreover, the empty orthorhombic phase was observed to exhibit superior thermoelasticity, and the molecular-scale structural mobility could be transmitted to a macroscopic crystal shape change. The driving force of the shape-memory behaviour was elucidated in terms of potential energy. These two interconvertible empty phases with different pore shapes, that is, the orthorhombic phase with rectangular pores and the tetragonal phase with square pores, completely reject or weakly adsorb N(2) at 77 K, respectively. Nature Publishing Group 2016-05-11 /pmc/articles/PMC4865851/ /pubmed/27168321 http://dx.doi.org/10.1038/ncomms11564 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Huang, You-Gui
Shiota, Yoshihito
Wu, Ming-Yan
Su, Sheng-Qun
Yao, Zi-Shuo
Kang, Soonchul
Kanegawa, Shinji
Li, Guo-Ling
Wu, Shu-Qi
Kamachi, Takashi
Yoshizawa, Kazunari
Ariga, Katsuhiko
Hong, Mao-Chun
Sato, Osamu
Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework
title Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework
title_full Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework
title_fullStr Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework
title_full_unstemmed Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework
title_short Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework
title_sort superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865851/
https://www.ncbi.nlm.nih.gov/pubmed/27168321
http://dx.doi.org/10.1038/ncomms11564
work_keys_str_mv AT huangyougui superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT shiotayoshihito superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT wumingyan superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT sushengqun superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT yaozishuo superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT kangsoonchul superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT kanegawashinji superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT liguoling superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT wushuqi superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT kamachitakashi superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT yoshizawakazunari superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT arigakatsuhiko superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT hongmaochun superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework
AT satoosamu superiorthermoelasticityandshapememorynanoporesinaporoussupramolecularorganicframework