Cargando…

Increased Th17 cells and IL-17A exist in patients with B cell acute lymphoblastic leukemia and promote proliferation and resistance to daunorubicin through activation of Akt signaling

BACKGROUND: Immune regulation is crucial for the pathogenesis of B-cell acute lymphoblastic leukemia (B-ALL). It has been reported that Th17 cells as a newly identified subset of CD4(+) T cells are involved in the pathogenesis of several hematological disorders. However, the role of Th17 cells in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Bi, Laixi, Wu, Junqing, Ye, Aifang, Wu, Jianbo, Yu, Kang, Zhang, Shenghui, Han, Yixiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4866013/
https://www.ncbi.nlm.nih.gov/pubmed/27176825
http://dx.doi.org/10.1186/s12967-016-0894-9
Descripción
Sumario:BACKGROUND: Immune regulation is crucial for the pathogenesis of B-cell acute lymphoblastic leukemia (B-ALL). It has been reported that Th17 cells as a newly identified subset of CD4(+) T cells are involved in the pathogenesis of several hematological disorders. However, the role of Th17 cells in the pathophysiology of B-ALL is still unclear. METHODS: The frequencies of T cells were determined by flow cytometry in the peripheral blood and bone marrow of 44 newly diagnosed B-ALL patients and 25 age-matched healthy donors. The cell viability and apoptosis were determined by CCK-8 assay and Annexin V staining, respectively. Western blot was applied to identify the level of Akt and Stat3 phosphorylation. RESULTS: We assessed and observed a significantly increased frequency of Th17 cells and a drastically decreased frequency of Th1 cells in peripheral blood mononuclear cells and bone marrow mononuclear cells from newly diagnosed B-ALL patients compared with healthy donors. Furthermore, increased levels of Th17-related cytokines including IL-17, IL-21, IL-23, IL-1β, and IL-6 were presented in between blood and marrow in B-ALL patients. Both IL-17A and IL-21, two Th17-secreted cytokines, induced the proliferation of B-ALL cell line Nalm-6 and patient B-ALL cells isolated from B-ALL patients, herein either cytokine led to the phosphorylation of Akt and Stat3. Additionally, IL-17A promoted resistance to daunorubicin via activation of Akt signaling and the PI3K/Akt inhibitor LY294002 or perifosine almost completely rescued daunorubicin-induced cell death in B-ALL cells. CONCLUSIONS: Our findings suggest that elevated Th17 cells secrete IL-17A by which promotes the proliferation and resistance to daunorubicin in B-ALL cells through activation of Akt signaling. Th17 cells may represent a novel target to improve B-ALL immunotherapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-016-0894-9) contains supplementary material, which is available to authorized users.