Cargando…

Fixed allocation patterns, rather than plasticity, benefit recruitment and recovery from drought in seedlings of a desert shrub

The response of plants to drought is controlled by the interaction between physiological regulation and morphological adjustment. Although recent studies have highlighted the long-term morphological acclimatization of plants to drought, there is still debate on how plant biomass allocation patterns...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yao, Li, Yan, Xie, Jiang-Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4866650/
https://www.ncbi.nlm.nih.gov/pubmed/27073036
http://dx.doi.org/10.1093/aobpla/plw020
Descripción
Sumario:The response of plants to drought is controlled by the interaction between physiological regulation and morphological adjustment. Although recent studies have highlighted the long-term morphological acclimatization of plants to drought, there is still debate on how plant biomass allocation patterns respond to drought. In this study, we performed a greenhouse experiment with first-year seedlings of a desert shrub in control, drought and re-water treatments, to examine their physiological and morphological traits during drought and subsequent recovery. We found that (i) biomass was preferentially allocated to roots along a fixed allometric trajectory throughout the first year of development, irrespective of the variation in water availability; and (ii) this fixed biomass allocation pattern benefited the post-drought recovery. These results suggest that, in a stressful environment, natural selection has favoured a fixed biomass allocation pattern rather than plastic responses to environmental variation. The fixed ‘preferential allocation to root’ biomass suggests that roots may play a critical role in determining the fate of this desert shrub during prolonged drought. As the major organ for resource acquisition and storage, how the root system functions during drought requires further investigation.