Cargando…
Fast machine-learning online optimization of ultra-cold-atom experiments
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867626/ https://www.ncbi.nlm.nih.gov/pubmed/27180805 http://dx.doi.org/10.1038/srep25890 |
_version_ | 1782432056284807168 |
---|---|
author | Wigley, P. B. Everitt, P. J. van den Hengel, A. Bastian, J. W. Sooriyabandara, M. A. McDonald, G. D. Hardman, K. S. Quinlivan, C. D. Manju, P. Kuhn, C. C. N. Petersen, I. R. Luiten, A. N. Hope, J. J. Robins, N. P. Hush, M. R. |
author_facet | Wigley, P. B. Everitt, P. J. van den Hengel, A. Bastian, J. W. Sooriyabandara, M. A. McDonald, G. D. Hardman, K. S. Quinlivan, C. D. Manju, P. Kuhn, C. C. N. Petersen, I. R. Luiten, A. N. Hope, J. J. Robins, N. P. Hush, M. R. |
author_sort | Wigley, P. B. |
collection | PubMed |
description | We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. |
format | Online Article Text |
id | pubmed-4867626 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48676262016-05-31 Fast machine-learning online optimization of ultra-cold-atom experiments Wigley, P. B. Everitt, P. J. van den Hengel, A. Bastian, J. W. Sooriyabandara, M. A. McDonald, G. D. Hardman, K. S. Quinlivan, C. D. Manju, P. Kuhn, C. C. N. Petersen, I. R. Luiten, A. N. Hope, J. J. Robins, N. P. Hush, M. R. Sci Rep Article We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. Nature Publishing Group 2016-05-16 /pmc/articles/PMC4867626/ /pubmed/27180805 http://dx.doi.org/10.1038/srep25890 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Wigley, P. B. Everitt, P. J. van den Hengel, A. Bastian, J. W. Sooriyabandara, M. A. McDonald, G. D. Hardman, K. S. Quinlivan, C. D. Manju, P. Kuhn, C. C. N. Petersen, I. R. Luiten, A. N. Hope, J. J. Robins, N. P. Hush, M. R. Fast machine-learning online optimization of ultra-cold-atom experiments |
title | Fast machine-learning online optimization of ultra-cold-atom experiments |
title_full | Fast machine-learning online optimization of ultra-cold-atom experiments |
title_fullStr | Fast machine-learning online optimization of ultra-cold-atom experiments |
title_full_unstemmed | Fast machine-learning online optimization of ultra-cold-atom experiments |
title_short | Fast machine-learning online optimization of ultra-cold-atom experiments |
title_sort | fast machine-learning online optimization of ultra-cold-atom experiments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867626/ https://www.ncbi.nlm.nih.gov/pubmed/27180805 http://dx.doi.org/10.1038/srep25890 |
work_keys_str_mv | AT wigleypb fastmachinelearningonlineoptimizationofultracoldatomexperiments AT everittpj fastmachinelearningonlineoptimizationofultracoldatomexperiments AT vandenhengela fastmachinelearningonlineoptimizationofultracoldatomexperiments AT bastianjw fastmachinelearningonlineoptimizationofultracoldatomexperiments AT sooriyabandarama fastmachinelearningonlineoptimizationofultracoldatomexperiments AT mcdonaldgd fastmachinelearningonlineoptimizationofultracoldatomexperiments AT hardmanks fastmachinelearningonlineoptimizationofultracoldatomexperiments AT quinlivancd fastmachinelearningonlineoptimizationofultracoldatomexperiments AT manjup fastmachinelearningonlineoptimizationofultracoldatomexperiments AT kuhnccn fastmachinelearningonlineoptimizationofultracoldatomexperiments AT petersenir fastmachinelearningonlineoptimizationofultracoldatomexperiments AT luitenan fastmachinelearningonlineoptimizationofultracoldatomexperiments AT hopejj fastmachinelearningonlineoptimizationofultracoldatomexperiments AT robinsnp fastmachinelearningonlineoptimizationofultracoldatomexperiments AT hushmr fastmachinelearningonlineoptimizationofultracoldatomexperiments |