Cargando…

Fast machine-learning online optimization of ultra-cold-atom experiments

We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal...

Descripción completa

Detalles Bibliográficos
Autores principales: Wigley, P. B., Everitt, P. J., van den Hengel, A., Bastian, J. W., Sooriyabandara, M. A., McDonald, G. D., Hardman, K. S., Quinlivan, C. D., Manju, P., Kuhn, C. C. N., Petersen, I. R., Luiten, A. N., Hope, J. J., Robins, N. P., Hush, M. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867626/
https://www.ncbi.nlm.nih.gov/pubmed/27180805
http://dx.doi.org/10.1038/srep25890
_version_ 1782432056284807168
author Wigley, P. B.
Everitt, P. J.
van den Hengel, A.
Bastian, J. W.
Sooriyabandara, M. A.
McDonald, G. D.
Hardman, K. S.
Quinlivan, C. D.
Manju, P.
Kuhn, C. C. N.
Petersen, I. R.
Luiten, A. N.
Hope, J. J.
Robins, N. P.
Hush, M. R.
author_facet Wigley, P. B.
Everitt, P. J.
van den Hengel, A.
Bastian, J. W.
Sooriyabandara, M. A.
McDonald, G. D.
Hardman, K. S.
Quinlivan, C. D.
Manju, P.
Kuhn, C. C. N.
Petersen, I. R.
Luiten, A. N.
Hope, J. J.
Robins, N. P.
Hush, M. R.
author_sort Wigley, P. B.
collection PubMed
description We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.
format Online
Article
Text
id pubmed-4867626
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48676262016-05-31 Fast machine-learning online optimization of ultra-cold-atom experiments Wigley, P. B. Everitt, P. J. van den Hengel, A. Bastian, J. W. Sooriyabandara, M. A. McDonald, G. D. Hardman, K. S. Quinlivan, C. D. Manju, P. Kuhn, C. C. N. Petersen, I. R. Luiten, A. N. Hope, J. J. Robins, N. P. Hush, M. R. Sci Rep Article We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. Nature Publishing Group 2016-05-16 /pmc/articles/PMC4867626/ /pubmed/27180805 http://dx.doi.org/10.1038/srep25890 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wigley, P. B.
Everitt, P. J.
van den Hengel, A.
Bastian, J. W.
Sooriyabandara, M. A.
McDonald, G. D.
Hardman, K. S.
Quinlivan, C. D.
Manju, P.
Kuhn, C. C. N.
Petersen, I. R.
Luiten, A. N.
Hope, J. J.
Robins, N. P.
Hush, M. R.
Fast machine-learning online optimization of ultra-cold-atom experiments
title Fast machine-learning online optimization of ultra-cold-atom experiments
title_full Fast machine-learning online optimization of ultra-cold-atom experiments
title_fullStr Fast machine-learning online optimization of ultra-cold-atom experiments
title_full_unstemmed Fast machine-learning online optimization of ultra-cold-atom experiments
title_short Fast machine-learning online optimization of ultra-cold-atom experiments
title_sort fast machine-learning online optimization of ultra-cold-atom experiments
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867626/
https://www.ncbi.nlm.nih.gov/pubmed/27180805
http://dx.doi.org/10.1038/srep25890
work_keys_str_mv AT wigleypb fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT everittpj fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT vandenhengela fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT bastianjw fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT sooriyabandarama fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT mcdonaldgd fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT hardmanks fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT quinlivancd fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT manjup fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT kuhnccn fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT petersenir fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT luitenan fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT hopejj fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT robinsnp fastmachinelearningonlineoptimizationofultracoldatomexperiments
AT hushmr fastmachinelearningonlineoptimizationofultracoldatomexperiments