Cargando…
Statistical Inference in Hidden Markov Models Using k-Segment Constraints
Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi algorithm, or the sequence o...
Autores principales: | Titsias, Michalis K., Holmes, Christopher C., Yau, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867884/ https://www.ncbi.nlm.nih.gov/pubmed/27226674 http://dx.doi.org/10.1080/01621459.2014.998762 |
Ejemplares similares
-
The Hamming Ball Sampler
por: Titsias, Michalis K., et al.
Publicado: (2017) -
Inferring Adaptive Introgression Using Hidden Markov Models
por: Svedberg, Jesper, et al.
Publicado: (2021) -
Estimating Empirical Codon Hidden Markov Models
por: De Maio, Nicola, et al.
Publicado: (2013) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005) -
DIF Statistical Inference Without Knowing Anchoring Items
por: Chen, Yunxiao, et al.
Publicado: (2023)