Cargando…
Discriminative Learning for Alzheimer's Disease Diagnosis via Canonical Correlation Analysis and Multimodal Fusion
To address the challenging task of diagnosing neurodegenerative brain disease, such as Alzheimer's disease (AD) and mild cognitive impairment (MCI), we propose a novel method using discriminative feature learning and canonical correlation analysis (CCA) in this paper. Specifically, multimodal f...
Autores principales: | Lei, Baiying, Chen, Siping, Ni, Dong, Wang, Tianfu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868852/ https://www.ncbi.nlm.nih.gov/pubmed/27242506 http://dx.doi.org/10.3389/fnagi.2016.00077 |
Ejemplares similares
-
Longitudinal Analysis for Disease Progression via Simultaneous Multi-Relational Temporal-Fused Learning
por: Lei, Baiying, et al.
Publicado: (2017) -
Discriminative Learning for Automatic Staging of Placental Maturity via Multi-layer Fisher Vector
por: Lei, Baiying, et al.
Publicado: (2015) -
Multi-task fused sparse learning for mild cognitive impairment identification
por: Yang, Peng, et al.
Publicado: (2018) -
Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector
por: Lei, Baiying, et al.
Publicado: (2015) -
Fusing Multimodal and Anatomical Volumes of Interest Features Using Convolutional Auto-Encoder and Convolutional Neural Networks for Alzheimer’s Disease Diagnosis
por: Abdelaziz, Mohammed, et al.
Publicado: (2022)