Cargando…

Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity

Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal n...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeitler, Magteld, Tass, Peter A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868855/
https://www.ncbi.nlm.nih.gov/pubmed/27242500
http://dx.doi.org/10.3389/fncom.2016.00044
_version_ 1782432214330376192
author Zeitler, Magteld
Tass, Peter A.
author_facet Zeitler, Magteld
Tass, Peter A.
author_sort Zeitler, Magteld
collection PubMed
description Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike timing–dependent plasticity CR stimulation causes a decrease of synaptic weights and finally anti-kindling, i.e., unlearning of abnormally strong synaptic connectivity and abnormal neuronal synchrony. Long-lasting desynchronizing aftereffects of CR stimulation have been verified in pre-clinical and clinical proof of concept studies. In general, for different neuromodulation approaches, both invasive and non-invasive, it is desirable to enable effective stimulation at reduced stimulation intensities, thereby avoiding side effects. For the first time, we here present a two-stage CR stimulation protocol, where two qualitatively different types of CR stimulation are delivered one after another, and the first stage comes at a particularly weak stimulation intensity. Numerical simulations show that a two-stage CR stimulation can induce the same degree of anti-kindling as a single-stage CR stimulation with intermediate stimulation intensity. This stimulation approach might be clinically beneficial in patients suffering from brain diseases characterized by abnormal neuronal synchrony where a first treatment stage should be performed at particularly weak stimulation intensities in order to avoid side effects. This might, e.g., be relevant in the context of acoustic CR stimulation in tinnitus patients with hyperacusis or in the case of electrical deep brain CR stimulation with sub-optimally positioned leads or side effects caused by stimulation of the target itself. We discuss how to apply our method in first in man and proof of concept studies.
format Online
Article
Text
id pubmed-4868855
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-48688552016-05-30 Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity Zeitler, Magteld Tass, Peter A. Front Comput Neurosci Neuroscience Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike timing–dependent plasticity CR stimulation causes a decrease of synaptic weights and finally anti-kindling, i.e., unlearning of abnormally strong synaptic connectivity and abnormal neuronal synchrony. Long-lasting desynchronizing aftereffects of CR stimulation have been verified in pre-clinical and clinical proof of concept studies. In general, for different neuromodulation approaches, both invasive and non-invasive, it is desirable to enable effective stimulation at reduced stimulation intensities, thereby avoiding side effects. For the first time, we here present a two-stage CR stimulation protocol, where two qualitatively different types of CR stimulation are delivered one after another, and the first stage comes at a particularly weak stimulation intensity. Numerical simulations show that a two-stage CR stimulation can induce the same degree of anti-kindling as a single-stage CR stimulation with intermediate stimulation intensity. This stimulation approach might be clinically beneficial in patients suffering from brain diseases characterized by abnormal neuronal synchrony where a first treatment stage should be performed at particularly weak stimulation intensities in order to avoid side effects. This might, e.g., be relevant in the context of acoustic CR stimulation in tinnitus patients with hyperacusis or in the case of electrical deep brain CR stimulation with sub-optimally positioned leads or side effects caused by stimulation of the target itself. We discuss how to apply our method in first in man and proof of concept studies. Frontiers Media S.A. 2016-05-17 /pmc/articles/PMC4868855/ /pubmed/27242500 http://dx.doi.org/10.3389/fncom.2016.00044 Text en Copyright © 2016 Zeitler and Tass. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Zeitler, Magteld
Tass, Peter A.
Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity
title Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity
title_full Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity
title_fullStr Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity
title_full_unstemmed Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity
title_short Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity
title_sort anti-kindling induced by two-stage coordinated reset stimulation with weak onset intensity
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868855/
https://www.ncbi.nlm.nih.gov/pubmed/27242500
http://dx.doi.org/10.3389/fncom.2016.00044
work_keys_str_mv AT zeitlermagteld antikindlinginducedbytwostagecoordinatedresetstimulationwithweakonsetintensity
AT tasspetera antikindlinginducedbytwostagecoordinatedresetstimulationwithweakonsetintensity