Cargando…

Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers

The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg(2+)‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical appr...

Descripción completa

Detalles Bibliográficos
Autores principales: Maeshima, Kazuhiro, Rogge, Ryan, Tamura, Sachiko, Joti, Yasumasa, Hikima, Takaaki, Szerlong, Heather, Krause, Christine, Herman, Jake, Seidel, Erik, DeLuca, Jennifer, Ishikawa, Tetsuya, Hansen, Jeffrey C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868957/
https://www.ncbi.nlm.nih.gov/pubmed/27072995
http://dx.doi.org/10.15252/embj.201592660
_version_ 1782432236156485632
author Maeshima, Kazuhiro
Rogge, Ryan
Tamura, Sachiko
Joti, Yasumasa
Hikima, Takaaki
Szerlong, Heather
Krause, Christine
Herman, Jake
Seidel, Erik
DeLuca, Jennifer
Ishikawa, Tetsuya
Hansen, Jeffrey C
author_facet Maeshima, Kazuhiro
Rogge, Ryan
Tamura, Sachiko
Joti, Yasumasa
Hikima, Takaaki
Szerlong, Heather
Krause, Christine
Herman, Jake
Seidel, Erik
DeLuca, Jennifer
Ishikawa, Tetsuya
Hansen, Jeffrey C
author_sort Maeshima, Kazuhiro
collection PubMed
description The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg(2+)‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl(2), but became disrupted in the absence of MgCl(2), conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.
format Online
Article
Text
id pubmed-4868957
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-48689572016-11-21 Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers Maeshima, Kazuhiro Rogge, Ryan Tamura, Sachiko Joti, Yasumasa Hikima, Takaaki Szerlong, Heather Krause, Christine Herman, Jake Seidel, Erik DeLuca, Jennifer Ishikawa, Tetsuya Hansen, Jeffrey C EMBO J Articles The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg(2+)‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl(2), but became disrupted in the absence of MgCl(2), conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes. John Wiley and Sons Inc. 2016-04-13 2016-05-17 /pmc/articles/PMC4868957/ /pubmed/27072995 http://dx.doi.org/10.15252/embj.201592660 Text en © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Articles
Maeshima, Kazuhiro
Rogge, Ryan
Tamura, Sachiko
Joti, Yasumasa
Hikima, Takaaki
Szerlong, Heather
Krause, Christine
Herman, Jake
Seidel, Erik
DeLuca, Jennifer
Ishikawa, Tetsuya
Hansen, Jeffrey C
Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers
title Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers
title_full Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers
title_fullStr Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers
title_full_unstemmed Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers
title_short Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers
title_sort nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868957/
https://www.ncbi.nlm.nih.gov/pubmed/27072995
http://dx.doi.org/10.15252/embj.201592660
work_keys_str_mv AT maeshimakazuhiro nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT roggeryan nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT tamurasachiko nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT jotiyasumasa nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT hikimatakaaki nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT szerlongheather nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT krausechristine nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT hermanjake nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT seidelerik nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT delucajennifer nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT ishikawatetsuya nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers
AT hansenjeffreyc nucleosomalarraysselfassembleintosupramolecularglobularstructureslacking30nmfibers