Cargando…
Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records
Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature...
Autores principales: | Miotto, Riccardo, Li, Li, Kidd, Brian A., Dudley, Joel T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869115/ https://www.ncbi.nlm.nih.gov/pubmed/27185194 http://dx.doi.org/10.1038/srep26094 |
Ejemplares similares
-
Deep representation learning of electronic health records to unlock patient stratification at scale
por: Landi, Isotta, et al.
Publicado: (2020) -
Phe2vec: Automated disease phenotyping based on unsupervised embeddings from electronic health records
por: De Freitas, Jessica K., et al.
Publicado: (2021) -
The application of unsupervised deep learning in predictive models using electronic health records
por: Wang, Lei, et al.
Publicado: (2020) -
Predicting hypertension onset from longitudinal electronic health records with deep learning
por: Datta, Suparno, et al.
Publicado: (2022) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021)