Cargando…

Betulinic acid synergically enhances BMP2-induced bone formation via stimulating Smad 1/5/8 and p38 pathways

BACKGROUND: Healing of bone defects is a dynamic and orchestrated process that relies on multiple growth factors and cell types. Bone morphogenetic protein 2 (BMP2) is a key growth factor for bone healing, which stimulates mesenchymal stem cells to differentiate into osteoblasts. Betulinic acid (Bet...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Hyuck, Jeong, Byung-Chul, Kook, Min-Suk, Koh, Jeong-Tae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869197/
https://www.ncbi.nlm.nih.gov/pubmed/27188281
http://dx.doi.org/10.1186/s12929-016-0260-5
Descripción
Sumario:BACKGROUND: Healing of bone defects is a dynamic and orchestrated process that relies on multiple growth factors and cell types. Bone morphogenetic protein 2 (BMP2) is a key growth factor for bone healing, which stimulates mesenchymal stem cells to differentiate into osteoblasts. Betulinic acid (BetA) is a natural pentacyclic triterpenoid from plants. This study aimed to examine combinatory effects of BetA and BMP2 on ectopic bone generation in mice. RESULTS: In MC3T3-E1 preosteoblast culture, 10–15 μM of BetA increased the alkaline phosphatase (ALP) activity and expression levels of osteogenic marker genes without the decreased cell viability. In addition, BetA synergistically enhanced BMP2-induced gene expressions and mineralization with the enhancement of phosphorylation of Smad1/5/8 and p38. In an in vivo ectopic bone formation model, combination of BetA (50 μg) and BMP2 (3 μg) resulted in increases in the amount of new bone generation, compared with treatment with BMP2 alone. Histological studies showed that bone generation with cortical and trabecular structures was resulted from the combination of BetA and BMP2. CONCLUSION: BetA can enhance in vivo osteogenic potentials of BMP2, possibly via stimulating Smad 1/5/8 and p38 pathways, and combination of both agents can be considered as a therapeutic strategy for bone diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12929-016-0260-5) contains supplementary material, which is available to authorized users.