Cargando…

Characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment

BACKGROUND: The aim of the study was to develop a nude mouse xenograft model implanted with both benign and malignant xenografts as the preliminary candidate screening tool for contrast agent development in lesion malignancy indication. RESULTS: A malignant xenograft (either MCF-7 cell/matrigel™ or...

Descripción completa

Detalles Bibliográficos
Autores principales: Yen, Tsung-Hsien, Lee, Gi-Da, Chai, Jyn-Wen, Liao, Jiunn-Wang, Lau, Jia-Yu, Hu, Li-Che, Liao, Kuo-Chih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869355/
https://www.ncbi.nlm.nih.gov/pubmed/27188327
http://dx.doi.org/10.1186/s12929-016-0261-4
_version_ 1782432304733356032
author Yen, Tsung-Hsien
Lee, Gi-Da
Chai, Jyn-Wen
Liao, Jiunn-Wang
Lau, Jia-Yu
Hu, Li-Che
Liao, Kuo-Chih
author_facet Yen, Tsung-Hsien
Lee, Gi-Da
Chai, Jyn-Wen
Liao, Jiunn-Wang
Lau, Jia-Yu
Hu, Li-Che
Liao, Kuo-Chih
author_sort Yen, Tsung-Hsien
collection PubMed
description BACKGROUND: The aim of the study was to develop a nude mouse xenograft model implanted with both benign and malignant xenografts as the preliminary candidate screening tool for contrast agent development in lesion malignancy indication. RESULTS: A malignant xenograft (either MCF-7 cell/matrigel™ or MDA-MB 231 cell/matrigel) and a benign xenograft (culture medium/matrigel) with cleft and slit-like features of intracanaliculer fibroadenoma were implanted subcutaneously into flanks of individual nu/nu nude mouse with >90 % successful inoculation rate. Both malignant and benign xenografts with volume up to 4 cm(3) and (size up to 2 cm) after 5(th) week were characterized in vivo by sonogram (exhibiting endogenous morphological contrast features between benign and malignant xenografts), dynamic contrast enhanced multi-detector computed tomography (presenting non-targeting exogenous morphological and dynamic contrast features between benign and malignant xenografts), and then were harvested for histological and immunohistochemistry (revealing example of targeting/molecular contrast features, such as expression of cancer vascular markers of malignant xenografts). Malignant xenografts appeared morphologically taller than wide (axis parallel to skin) with angular/ill-defined margin under sonogram observations, revealed more evident rim enhancement, angular margin and washout pattern in the time-density curve from dynamic contrast enhance multi-detector computed tomography images, and had more visible cancer vascular markers (CD31 and VEGF) expression. With limited number of subjects (5–27 for each group of a specific imaging contrast feature), those imaging contrast features of the xenograft model had larger than 85 % sensitivity, specificity, accuracy, positive and negative prediction values in indicating xenograft malignancy except for results from color Doppler detections. CONCLUSIONS: The murine xenograft model might provide an earlier efficacy evaluation of new contrast agent candidate for lesion malignancy interrogation with qualitative and quantitative indication before a human study to reduce the risk and conserve the resources (time, finance and manpower).
format Online
Article
Text
id pubmed-4869355
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-48693552016-05-18 Characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment Yen, Tsung-Hsien Lee, Gi-Da Chai, Jyn-Wen Liao, Jiunn-Wang Lau, Jia-Yu Hu, Li-Che Liao, Kuo-Chih J Biomed Sci Research BACKGROUND: The aim of the study was to develop a nude mouse xenograft model implanted with both benign and malignant xenografts as the preliminary candidate screening tool for contrast agent development in lesion malignancy indication. RESULTS: A malignant xenograft (either MCF-7 cell/matrigel™ or MDA-MB 231 cell/matrigel) and a benign xenograft (culture medium/matrigel) with cleft and slit-like features of intracanaliculer fibroadenoma were implanted subcutaneously into flanks of individual nu/nu nude mouse with >90 % successful inoculation rate. Both malignant and benign xenografts with volume up to 4 cm(3) and (size up to 2 cm) after 5(th) week were characterized in vivo by sonogram (exhibiting endogenous morphological contrast features between benign and malignant xenografts), dynamic contrast enhanced multi-detector computed tomography (presenting non-targeting exogenous morphological and dynamic contrast features between benign and malignant xenografts), and then were harvested for histological and immunohistochemistry (revealing example of targeting/molecular contrast features, such as expression of cancer vascular markers of malignant xenografts). Malignant xenografts appeared morphologically taller than wide (axis parallel to skin) with angular/ill-defined margin under sonogram observations, revealed more evident rim enhancement, angular margin and washout pattern in the time-density curve from dynamic contrast enhance multi-detector computed tomography images, and had more visible cancer vascular markers (CD31 and VEGF) expression. With limited number of subjects (5–27 for each group of a specific imaging contrast feature), those imaging contrast features of the xenograft model had larger than 85 % sensitivity, specificity, accuracy, positive and negative prediction values in indicating xenograft malignancy except for results from color Doppler detections. CONCLUSIONS: The murine xenograft model might provide an earlier efficacy evaluation of new contrast agent candidate for lesion malignancy interrogation with qualitative and quantitative indication before a human study to reduce the risk and conserve the resources (time, finance and manpower). BioMed Central 2016-05-17 /pmc/articles/PMC4869355/ /pubmed/27188327 http://dx.doi.org/10.1186/s12929-016-0261-4 Text en © Yen et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Yen, Tsung-Hsien
Lee, Gi-Da
Chai, Jyn-Wen
Liao, Jiunn-Wang
Lau, Jia-Yu
Hu, Li-Che
Liao, Kuo-Chih
Characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment
title Characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment
title_full Characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment
title_fullStr Characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment
title_full_unstemmed Characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment
title_short Characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment
title_sort characterization of a murine xenograft model for contrast agent development in breast lesion malignancy assessment
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869355/
https://www.ncbi.nlm.nih.gov/pubmed/27188327
http://dx.doi.org/10.1186/s12929-016-0261-4
work_keys_str_mv AT yentsunghsien characterizationofamurinexenograftmodelforcontrastagentdevelopmentinbreastlesionmalignancyassessment
AT leegida characterizationofamurinexenograftmodelforcontrastagentdevelopmentinbreastlesionmalignancyassessment
AT chaijynwen characterizationofamurinexenograftmodelforcontrastagentdevelopmentinbreastlesionmalignancyassessment
AT liaojiunnwang characterizationofamurinexenograftmodelforcontrastagentdevelopmentinbreastlesionmalignancyassessment
AT laujiayu characterizationofamurinexenograftmodelforcontrastagentdevelopmentinbreastlesionmalignancyassessment
AT huliche characterizationofamurinexenograftmodelforcontrastagentdevelopmentinbreastlesionmalignancyassessment
AT liaokuochih characterizationofamurinexenograftmodelforcontrastagentdevelopmentinbreastlesionmalignancyassessment