Cargando…

Cost-effectiveness of medical primary prevention strategies to reduce absolute risk of cardiovascular disease in Tanzania: a Markov modelling study

BACKGROUND: Cardiovascular disease (CVD) is a growing cause of mortality and morbidity in Tanzania, but contextualized evidence on cost-effective medical strategies to prevent it is scarce. We aim to perform a cost-effectiveness analysis of medical interventions for primary prevention of CVD using t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ngalesoni, Frida N., Ruhago, George M., Mori, Amani T., Robberstad, Bjarne, Norheim, Ole F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869389/
https://www.ncbi.nlm.nih.gov/pubmed/27184802
http://dx.doi.org/10.1186/s12913-016-1409-3
Descripción
Sumario:BACKGROUND: Cardiovascular disease (CVD) is a growing cause of mortality and morbidity in Tanzania, but contextualized evidence on cost-effective medical strategies to prevent it is scarce. We aim to perform a cost-effectiveness analysis of medical interventions for primary prevention of CVD using the World Health Organization’s (WHO) absolute risk approach for four risk levels. METHODS: The cost-effectiveness analysis was performed from a societal perspective using two Markov decision models: CVD risk without diabetes and CVD risk with diabetes. Primary provider and patient costs were estimated using the ingredients approach and step-down methodologies. Epidemiological data and efficacy inputs were derived from systematic reviews and meta-analyses. We used disability- adjusted life years (DALYs) averted as the outcome measure. Sensitivity analyses were conducted to evaluate the robustness of the model results. RESULTS: For CVD low-risk patients without diabetes, medical management is not cost-effective unless willingness to pay (WTP) is higher than US$1327 per DALY averted. For moderate-risk patients, WTP must exceed US$164 per DALY before a combination of angiotensin converting enzyme inhibitor (ACEI) and diuretic (Diu) becomes cost-effective, while for high-risk and very high-risk patients the thresholds are US$349 (ACEI, calcium channel blocker (CCB) and Diu) and US$498 per DALY (ACEI, CCB, Diu and Aspirin (ASA)) respectively. For patients with CVD risk with diabetes, a combination of sulfonylureas (Sulf), ACEI and CCB for low and moderate risk (incremental cost-effectiveness ratio (ICER) US$608 and US$115 per DALY respectively), is the most cost-effective, while adding biguanide (Big) to this combination yielded the most favourable ICERs of US$309 and US$350 per DALY for high and very high risk respectively. For the latter, ASA is also part of the combination. CONCLUSIONS: Medical preventive cardiology is very cost-effective for all risk levels except low CVD risk. Budget impact analyses and distributional concerns should be considered further to assess governments’ ability and to whom these benefits will accrue.