Cargando…

Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening

The discoveries and application of prostate-specific antigen (PSA) have been much appreciated because PSA-based screening has saved millions of lives of prostate cancer (PCa) patients. Historically speaking, Flocks et al first identified antigenic properties in prostate tissue in 1960. Then, Barnes...

Descripción completa

Detalles Bibliográficos
Autores principales: Tokudome, Shinkan, Ando, Ryosuke, Koda, Yoshiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869637/
https://www.ncbi.nlm.nih.gov/pubmed/27274309
http://dx.doi.org/10.2147/CMAR.S98326
_version_ 1782432352368066560
author Tokudome, Shinkan
Ando, Ryosuke
Koda, Yoshiro
author_facet Tokudome, Shinkan
Ando, Ryosuke
Koda, Yoshiro
author_sort Tokudome, Shinkan
collection PubMed
description The discoveries and application of prostate-specific antigen (PSA) have been much appreciated because PSA-based screening has saved millions of lives of prostate cancer (PCa) patients. Historically speaking, Flocks et al first identified antigenic properties in prostate tissue in 1960. Then, Barnes et al detected immunologic characteristics in prostatic fluid in 1963. Hara et al characterized γ-semino-protein in semen in 1966, and it has been proven to be identical to PSA. Subsequently, Ablin et al independently reported the presence of precipitation antigens in the prostate in 1970. Wang et al purified the PSA in 1979, and Kuriyama et al first applied an enzyme-linked immunosorbent assay for PSA in 1980. However, the positive predictive value with a cutoff figure of 4.0 ng/mL appeared substantially low (∼30%). There are overdiagnoses and overtreatments for latent/low-risk PCa. Controversies exist in the PCa mortality-reducing effects of PSA screening between the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the US Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. For optimizing PCa screening, PSA-related items may require the following: 1) adjustment of the cutoff values according to age, as well as setting limits to age and screening intervals; 2) improving test performance using doubling time, density, and ratio of free: total PSA; and 3) fostering active surveillance for low-risk PCa with monitoring by PSA value. Other items needing consideration may include the following: 1) examinations of cell proliferation and cell cycle markers in biopsy specimens; 2) independent quantification of Gleason grading; 3) developing ethnicity-specific staging nomograms based on tumor stage, PSA value, and Gleason score; 4) delineation of the natural history; 5) revisiting the significance of the androgen/testosterone hypothesis; and 6) devoting special attention to individuals with a certain genetic predisposition. Finally, considering the uncertainty that exists in medicine, risk communication on PSA-based screening is indeed due.
format Online
Article
Text
id pubmed-4869637
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-48696372016-06-07 Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening Tokudome, Shinkan Ando, Ryosuke Koda, Yoshiro Cancer Manag Res Commentary The discoveries and application of prostate-specific antigen (PSA) have been much appreciated because PSA-based screening has saved millions of lives of prostate cancer (PCa) patients. Historically speaking, Flocks et al first identified antigenic properties in prostate tissue in 1960. Then, Barnes et al detected immunologic characteristics in prostatic fluid in 1963. Hara et al characterized γ-semino-protein in semen in 1966, and it has been proven to be identical to PSA. Subsequently, Ablin et al independently reported the presence of precipitation antigens in the prostate in 1970. Wang et al purified the PSA in 1979, and Kuriyama et al first applied an enzyme-linked immunosorbent assay for PSA in 1980. However, the positive predictive value with a cutoff figure of 4.0 ng/mL appeared substantially low (∼30%). There are overdiagnoses and overtreatments for latent/low-risk PCa. Controversies exist in the PCa mortality-reducing effects of PSA screening between the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the US Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. For optimizing PCa screening, PSA-related items may require the following: 1) adjustment of the cutoff values according to age, as well as setting limits to age and screening intervals; 2) improving test performance using doubling time, density, and ratio of free: total PSA; and 3) fostering active surveillance for low-risk PCa with monitoring by PSA value. Other items needing consideration may include the following: 1) examinations of cell proliferation and cell cycle markers in biopsy specimens; 2) independent quantification of Gleason grading; 3) developing ethnicity-specific staging nomograms based on tumor stage, PSA value, and Gleason score; 4) delineation of the natural history; 5) revisiting the significance of the androgen/testosterone hypothesis; and 6) devoting special attention to individuals with a certain genetic predisposition. Finally, considering the uncertainty that exists in medicine, risk communication on PSA-based screening is indeed due. Dove Medical Press 2016-05-10 /pmc/articles/PMC4869637/ /pubmed/27274309 http://dx.doi.org/10.2147/CMAR.S98326 Text en © 2016 Tokudome et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.
spellingShingle Commentary
Tokudome, Shinkan
Ando, Ryosuke
Koda, Yoshiro
Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening
title Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening
title_full Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening
title_fullStr Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening
title_full_unstemmed Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening
title_short Discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening
title_sort discoveries and application of prostate-specific antigen, and some proposals to optimize prostate cancer screening
topic Commentary
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869637/
https://www.ncbi.nlm.nih.gov/pubmed/27274309
http://dx.doi.org/10.2147/CMAR.S98326
work_keys_str_mv AT tokudomeshinkan discoveriesandapplicationofprostatespecificantigenandsomeproposalstooptimizeprostatecancerscreening
AT andoryosuke discoveriesandapplicationofprostatespecificantigenandsomeproposalstooptimizeprostatecancerscreening
AT kodayoshiro discoveriesandapplicationofprostatespecificantigenandsomeproposalstooptimizeprostatecancerscreening