Cargando…

General Framework for Meta‐Analysis of Haplotype Association Tests

For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and me...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shuai, Zhao, Jing Hua, An, Ping, Guo, Xiuqing, Jensen, Richard A., Marten, Jonathan, Huffman, Jennifer E., Meidtner, Karina, Boeing, Heiner, Campbell, Archie, Rice, Kenneth M., Scott, Robert A., Yao, Jie, Schulze, Matthias B., Wareham, Nicholas J., Borecki, Ingrid B., Province, Michael A., Rotter, Jerome I., Hayward, Caroline, Goodarzi, Mark O., Meigs, James B., Dupuis, Josée
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869684/
https://www.ncbi.nlm.nih.gov/pubmed/27027517
http://dx.doi.org/10.1002/gepi.21959
_version_ 1782432362693394432
author Wang, Shuai
Zhao, Jing Hua
An, Ping
Guo, Xiuqing
Jensen, Richard A.
Marten, Jonathan
Huffman, Jennifer E.
Meidtner, Karina
Boeing, Heiner
Campbell, Archie
Rice, Kenneth M.
Scott, Robert A.
Yao, Jie
Schulze, Matthias B.
Wareham, Nicholas J.
Borecki, Ingrid B.
Province, Michael A.
Rotter, Jerome I.
Hayward, Caroline
Goodarzi, Mark O.
Meigs, James B.
Dupuis, Josée
author_facet Wang, Shuai
Zhao, Jing Hua
An, Ping
Guo, Xiuqing
Jensen, Richard A.
Marten, Jonathan
Huffman, Jennifer E.
Meidtner, Karina
Boeing, Heiner
Campbell, Archie
Rice, Kenneth M.
Scott, Robert A.
Yao, Jie
Schulze, Matthias B.
Wareham, Nicholas J.
Borecki, Ingrid B.
Province, Michael A.
Rotter, Jerome I.
Hayward, Caroline
Goodarzi, Mark O.
Meigs, James B.
Dupuis, Josée
author_sort Wang, Shuai
collection PubMed
description For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta‐analysis has emerged as the method of choice to combine results from multiple studies. Many meta‐analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta‐analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two‐stage meta‐analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta‐analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype‐specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type‐I error rate, and our approach is more powerful than inverse variance weighted meta‐analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose‐associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates.
format Online
Article
Text
id pubmed-4869684
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-48696842016-06-22 General Framework for Meta‐Analysis of Haplotype Association Tests Wang, Shuai Zhao, Jing Hua An, Ping Guo, Xiuqing Jensen, Richard A. Marten, Jonathan Huffman, Jennifer E. Meidtner, Karina Boeing, Heiner Campbell, Archie Rice, Kenneth M. Scott, Robert A. Yao, Jie Schulze, Matthias B. Wareham, Nicholas J. Borecki, Ingrid B. Province, Michael A. Rotter, Jerome I. Hayward, Caroline Goodarzi, Mark O. Meigs, James B. Dupuis, Josée Genet Epidemiol Research Articles For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta‐analysis has emerged as the method of choice to combine results from multiple studies. Many meta‐analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta‐analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two‐stage meta‐analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta‐analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype‐specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type‐I error rate, and our approach is more powerful than inverse variance weighted meta‐analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose‐associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates. John Wiley and Sons Inc. 2016-03-08 2016-04 /pmc/articles/PMC4869684/ /pubmed/27027517 http://dx.doi.org/10.1002/gepi.21959 Text en © 2016 The Authors. *Genetic Epidemiology Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wang, Shuai
Zhao, Jing Hua
An, Ping
Guo, Xiuqing
Jensen, Richard A.
Marten, Jonathan
Huffman, Jennifer E.
Meidtner, Karina
Boeing, Heiner
Campbell, Archie
Rice, Kenneth M.
Scott, Robert A.
Yao, Jie
Schulze, Matthias B.
Wareham, Nicholas J.
Borecki, Ingrid B.
Province, Michael A.
Rotter, Jerome I.
Hayward, Caroline
Goodarzi, Mark O.
Meigs, James B.
Dupuis, Josée
General Framework for Meta‐Analysis of Haplotype Association Tests
title General Framework for Meta‐Analysis of Haplotype Association Tests
title_full General Framework for Meta‐Analysis of Haplotype Association Tests
title_fullStr General Framework for Meta‐Analysis of Haplotype Association Tests
title_full_unstemmed General Framework for Meta‐Analysis of Haplotype Association Tests
title_short General Framework for Meta‐Analysis of Haplotype Association Tests
title_sort general framework for meta‐analysis of haplotype association tests
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869684/
https://www.ncbi.nlm.nih.gov/pubmed/27027517
http://dx.doi.org/10.1002/gepi.21959
work_keys_str_mv AT wangshuai generalframeworkformetaanalysisofhaplotypeassociationtests
AT zhaojinghua generalframeworkformetaanalysisofhaplotypeassociationtests
AT anping generalframeworkformetaanalysisofhaplotypeassociationtests
AT guoxiuqing generalframeworkformetaanalysisofhaplotypeassociationtests
AT jensenricharda generalframeworkformetaanalysisofhaplotypeassociationtests
AT martenjonathan generalframeworkformetaanalysisofhaplotypeassociationtests
AT huffmanjennifere generalframeworkformetaanalysisofhaplotypeassociationtests
AT meidtnerkarina generalframeworkformetaanalysisofhaplotypeassociationtests
AT boeingheiner generalframeworkformetaanalysisofhaplotypeassociationtests
AT campbellarchie generalframeworkformetaanalysisofhaplotypeassociationtests
AT ricekennethm generalframeworkformetaanalysisofhaplotypeassociationtests
AT scottroberta generalframeworkformetaanalysisofhaplotypeassociationtests
AT yaojie generalframeworkformetaanalysisofhaplotypeassociationtests
AT schulzematthiasb generalframeworkformetaanalysisofhaplotypeassociationtests
AT warehamnicholasj generalframeworkformetaanalysisofhaplotypeassociationtests
AT boreckiingridb generalframeworkformetaanalysisofhaplotypeassociationtests
AT provincemichaela generalframeworkformetaanalysisofhaplotypeassociationtests
AT rotterjeromei generalframeworkformetaanalysisofhaplotypeassociationtests
AT haywardcaroline generalframeworkformetaanalysisofhaplotypeassociationtests
AT goodarzimarko generalframeworkformetaanalysisofhaplotypeassociationtests
AT meigsjamesb generalframeworkformetaanalysisofhaplotypeassociationtests
AT dupuisjosee generalframeworkformetaanalysisofhaplotypeassociationtests