Cargando…
General Framework for Meta‐Analysis of Haplotype Association Tests
For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and me...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869684/ https://www.ncbi.nlm.nih.gov/pubmed/27027517 http://dx.doi.org/10.1002/gepi.21959 |
_version_ | 1782432362693394432 |
---|---|
author | Wang, Shuai Zhao, Jing Hua An, Ping Guo, Xiuqing Jensen, Richard A. Marten, Jonathan Huffman, Jennifer E. Meidtner, Karina Boeing, Heiner Campbell, Archie Rice, Kenneth M. Scott, Robert A. Yao, Jie Schulze, Matthias B. Wareham, Nicholas J. Borecki, Ingrid B. Province, Michael A. Rotter, Jerome I. Hayward, Caroline Goodarzi, Mark O. Meigs, James B. Dupuis, Josée |
author_facet | Wang, Shuai Zhao, Jing Hua An, Ping Guo, Xiuqing Jensen, Richard A. Marten, Jonathan Huffman, Jennifer E. Meidtner, Karina Boeing, Heiner Campbell, Archie Rice, Kenneth M. Scott, Robert A. Yao, Jie Schulze, Matthias B. Wareham, Nicholas J. Borecki, Ingrid B. Province, Michael A. Rotter, Jerome I. Hayward, Caroline Goodarzi, Mark O. Meigs, James B. Dupuis, Josée |
author_sort | Wang, Shuai |
collection | PubMed |
description | For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta‐analysis has emerged as the method of choice to combine results from multiple studies. Many meta‐analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta‐analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two‐stage meta‐analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta‐analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype‐specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type‐I error rate, and our approach is more powerful than inverse variance weighted meta‐analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose‐associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates. |
format | Online Article Text |
id | pubmed-4869684 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48696842016-06-22 General Framework for Meta‐Analysis of Haplotype Association Tests Wang, Shuai Zhao, Jing Hua An, Ping Guo, Xiuqing Jensen, Richard A. Marten, Jonathan Huffman, Jennifer E. Meidtner, Karina Boeing, Heiner Campbell, Archie Rice, Kenneth M. Scott, Robert A. Yao, Jie Schulze, Matthias B. Wareham, Nicholas J. Borecki, Ingrid B. Province, Michael A. Rotter, Jerome I. Hayward, Caroline Goodarzi, Mark O. Meigs, James B. Dupuis, Josée Genet Epidemiol Research Articles For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta‐analysis has emerged as the method of choice to combine results from multiple studies. Many meta‐analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta‐analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two‐stage meta‐analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta‐analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype‐specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type‐I error rate, and our approach is more powerful than inverse variance weighted meta‐analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose‐associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates. John Wiley and Sons Inc. 2016-03-08 2016-04 /pmc/articles/PMC4869684/ /pubmed/27027517 http://dx.doi.org/10.1002/gepi.21959 Text en © 2016 The Authors. *Genetic Epidemiology Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Wang, Shuai Zhao, Jing Hua An, Ping Guo, Xiuqing Jensen, Richard A. Marten, Jonathan Huffman, Jennifer E. Meidtner, Karina Boeing, Heiner Campbell, Archie Rice, Kenneth M. Scott, Robert A. Yao, Jie Schulze, Matthias B. Wareham, Nicholas J. Borecki, Ingrid B. Province, Michael A. Rotter, Jerome I. Hayward, Caroline Goodarzi, Mark O. Meigs, James B. Dupuis, Josée General Framework for Meta‐Analysis of Haplotype Association Tests |
title | General Framework for Meta‐Analysis of Haplotype Association Tests |
title_full | General Framework for Meta‐Analysis of Haplotype Association Tests |
title_fullStr | General Framework for Meta‐Analysis of Haplotype Association Tests |
title_full_unstemmed | General Framework for Meta‐Analysis of Haplotype Association Tests |
title_short | General Framework for Meta‐Analysis of Haplotype Association Tests |
title_sort | general framework for meta‐analysis of haplotype association tests |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869684/ https://www.ncbi.nlm.nih.gov/pubmed/27027517 http://dx.doi.org/10.1002/gepi.21959 |
work_keys_str_mv | AT wangshuai generalframeworkformetaanalysisofhaplotypeassociationtests AT zhaojinghua generalframeworkformetaanalysisofhaplotypeassociationtests AT anping generalframeworkformetaanalysisofhaplotypeassociationtests AT guoxiuqing generalframeworkformetaanalysisofhaplotypeassociationtests AT jensenricharda generalframeworkformetaanalysisofhaplotypeassociationtests AT martenjonathan generalframeworkformetaanalysisofhaplotypeassociationtests AT huffmanjennifere generalframeworkformetaanalysisofhaplotypeassociationtests AT meidtnerkarina generalframeworkformetaanalysisofhaplotypeassociationtests AT boeingheiner generalframeworkformetaanalysisofhaplotypeassociationtests AT campbellarchie generalframeworkformetaanalysisofhaplotypeassociationtests AT ricekennethm generalframeworkformetaanalysisofhaplotypeassociationtests AT scottroberta generalframeworkformetaanalysisofhaplotypeassociationtests AT yaojie generalframeworkformetaanalysisofhaplotypeassociationtests AT schulzematthiasb generalframeworkformetaanalysisofhaplotypeassociationtests AT warehamnicholasj generalframeworkformetaanalysisofhaplotypeassociationtests AT boreckiingridb generalframeworkformetaanalysisofhaplotypeassociationtests AT provincemichaela generalframeworkformetaanalysisofhaplotypeassociationtests AT rotterjeromei generalframeworkformetaanalysisofhaplotypeassociationtests AT haywardcaroline generalframeworkformetaanalysisofhaplotypeassociationtests AT goodarzimarko generalframeworkformetaanalysisofhaplotypeassociationtests AT meigsjamesb generalframeworkformetaanalysisofhaplotypeassociationtests AT dupuisjosee generalframeworkformetaanalysisofhaplotypeassociationtests |