Cargando…
Estimating causal effects: considering three alternatives to difference-in-differences estimation
Difference-in-differences (DiD) estimators provide unbiased treatment effect estimates when, in the absence of treatment, the average outcomes for the treated and control groups would have followed parallel trends over time. This assumption is implausible in many settings. An alternative assumption...
Autores principales: | O’Neill, Stephen, Kreif, Noémi, Grieve, Richard, Sutton, Matthew, Sekhon, Jasjeet S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869762/ https://www.ncbi.nlm.nih.gov/pubmed/27340369 http://dx.doi.org/10.1007/s10742-016-0146-8 |
Ejemplares similares
-
Evaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching
por: Kreif, Noémi, et al.
Publicado: (2014) -
A comparison of methods for health policy evaluation with controlled pre‐post designs
por: O'Neill, Stephen, et al.
Publicado: (2020) -
A comparison of alternative strategies for choosing control populations in observational studies
por: Steventon, Adam, et al.
Publicado: (2015) -
Estimating the Comparative Effectiveness of Feeding Interventions in the Pediatric Intensive Care Unit: A Demonstration of Longitudinal Targeted Maximum Likelihood Estimation
por: Kreif, Noémi, et al.
Publicado: (2017) -
Examination of the Synthetic Control Method for Evaluating Health Policies with Multiple Treated Units
por: Kreif, Noémi, et al.
Publicado: (2015)