Cargando…
A knowledge-poor approach to chemical-disease relation extraction
The article describes a knowledge-poor approach to the task of extracting Chemical-Disease Relations from PubMed abstracts. A first version of the approach was applied during the participation in the BioCreative V track 3, both in Disease Named Entity Recognition and Normalization (DNER) and in Chem...
Autores principales: | Alam, Firoj, Corazza, Anna, Lavelli, Alberto, Zanoli, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869795/ https://www.ncbi.nlm.nih.gov/pubmed/27189609 http://dx.doi.org/10.1093/database/baw071 |
Ejemplares similares
-
An annotated dataset for extracting gene-melanoma relations from scientific literature
por: Zanoli, Roberto, et al.
Publicado: (2022) -
Knowledge-guided convolutional networks for chemical-disease relation extraction
por: Zhou, Huiwei, et al.
Publicado: (2019) -
Extraction of chemical-induced diseases using prior knowledge and textual information
por: Pons, Ewoud, et al.
Publicado: (2016) -
A Knowledge-Driven Approach to Extract Disease-Related Biomarkers from the Literature
por: Bravo, À., et al.
Publicado: (2014) -
Exploiting syntactic and semantics information for chemical–disease relation extraction
por: Zhou, Huiwei, et al.
Publicado: (2016)