Cargando…

A LAIR-1 insertion generates broadly reactive antibodies against malaria variant antigens

Plasmodium falciparum antigens expressed on the surface of infected erythrocytes are important targets of naturally acquired immunity against malaria, but their high number and variability provide the pathogen with a powerful means of escape from host antibodies(1–4). Although broadly reactive antib...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Joshua, Pieper, Kathrin, Piccoli, Luca, Abdi, Abdirahman, Perez, Mathilde Foglierini, Geiger, Roger, Tully, Claire Maria, Jarrossay, David, Maina Ndungu, Francis, Wambua, Juliana, Bejon, Philip, Fregni, Chiara Silacci, Fernandez-Rodriguez, Blanca, Barbieri, Sonia, Bianchi, Siro, Marsh, Kevin, Thathy, Vandana, Corti, Davide, Sallusto, Federica, Bull, Peter, Lanzavecchia, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869849/
https://www.ncbi.nlm.nih.gov/pubmed/26700814
http://dx.doi.org/10.1038/nature16450
Descripción
Sumario:Plasmodium falciparum antigens expressed on the surface of infected erythrocytes are important targets of naturally acquired immunity against malaria, but their high number and variability provide the pathogen with a powerful means of escape from host antibodies(1–4). Although broadly reactive antibodies against these antigens could be useful as therapeutics and in vaccine design, their identification has proven elusive. Here, we report the isolation of human monoclonal antibodies that recognize erythrocytes infected by different P. falciparum isolates and opsonize these cells by binding to members of the RIFIN family. These antibodies acquired broad reactivity through a novel mechanism of insertion of a large DNA fragment between the V and DJ segments. The insert, which is both necessary and sufficient for binding to RIFINs, encodes the entire 100 amino acid collagen-binding domain of LAIR-1, an Ig superfamily inhibitory receptor encoded on chromosome 19. In each of the two donors studied, the antibodies are produced by a single expanded B cell clone and carry distinct somatic mutations in the LAIR-1 domain that abolish binding to collagen and increase binding to infected erythrocytes. These findings illustrate, with a biologically relevant example, a novel mechanism of antibody diversification by interchromosomal DNA transposition and demonstrate the existence of conserved epitopes that may be suitable candidates for the development of a malaria vaccine.