Cargando…

Joint Action of a Pair of Rowers in a Race: Shared Experiences of Effectiveness Are Shaped by Interpersonal Mechanical States

The purpose of this study was to understand how a single pair of expert individual rowers experienced their crew functioning in natural conditions when asked to practice a joint movement for the first time. To fulfill this objective, we conducted a field study of interpersonal coordination that comb...

Descripción completa

Detalles Bibliográficos
Autores principales: R’Kiouak, Mehdi, Saury, Jacques, Durand, Marc, Bourbousson, Jérôme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870391/
https://www.ncbi.nlm.nih.gov/pubmed/27242628
http://dx.doi.org/10.3389/fpsyg.2016.00720
Descripción
Sumario:The purpose of this study was to understand how a single pair of expert individual rowers experienced their crew functioning in natural conditions when asked to practice a joint movement for the first time. To fulfill this objective, we conducted a field study of interpersonal coordination that combined phenomenological and mechanical data from a coxless pair activity, to analyze the dynamics of the (inter)subjective experience compared with the dynamics of the team coordination. Using an enactivist approach to social couplings, these heterogeneous data were combined to explore the salience (and accuracy) of individuals’ shared experiences of their joint action. First, we determined how each rower experienced the continuous crew functioning states (e.g., feelings of the boat’s glide). Second, the phenomenological data helped us to build several categories of oar strokes (i.e., cycles), experienced by the rowers as either detrimentally or effectively performed strokes. Third, the mechanical signatures that correlated with each phenomenological category were tracked at various level of organization (i.e., individual-, interpersonal-, and boat-levels). The results indicated that (a) the two rowers did not pay attention to their joint action during most of the cycles, (b) some cycles were simultaneously lived as a salient, meaningful experience of either a detrimental (n = 15 cycles) or an effective (n = 18 cycles) joint action, and (c) the mechanical signatures diverged across the delineated phenomenological categories, suggesting that the way in which the cycles were experienced emerged from the variance in some mechanical parameters (i.e., differences in peak force level and mean force). Notably, the mechanical measures that helped to explain differences within the phenomenological categories were found at the interpersonal level of analysis, thus suggesting an intentional inter-personal mode of regulation of their joint action. This result is further challenged and discussed in light of extra-personal regulation processes that might concurrently explain why participants did not make an extensive salient experience of their joint action. We conclude that attempts to combine phenomenological and mechanical data should be pursued to continue the research on how individuals regulate the effectiveness of their joint actions’ dynamics.