Cargando…
Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline
Transcriptome sequencing (RNA-seq) is gradually replacing microarrays for high-throughput studies of gene expression. The main challenge of analyzing microarray data is not in finding differentially expressed genes, but in gaining insights into the biological processes underlying phenotypic differen...
Autores principales: | Rahmatallah, Yasir, Emmert-Streib, Frank, Glazko, Galina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870397/ https://www.ncbi.nlm.nih.gov/pubmed/26342128 http://dx.doi.org/10.1093/bib/bbv069 |
Ejemplares similares
-
Comparative evaluation of gene set analysis approaches for RNA-Seq data
por: Rahmatallah, Yasir, et al.
Publicado: (2014) -
Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets
por: Rahmatallah, Yasir, et al.
Publicado: (2014) -
GSAR: Bioconductor package for Gene Set analysis in R
por: Rahmatallah, Yasir, et al.
Publicado: (2017) -
Proteome-transcriptome alignment of molecular portraits achieved by self-contained gene set analysis: Consensus colon cancer subtypes case study
por: Glazko, Galina, et al.
Publicado: (2019) -
Effects of subsampling on characteristics of RNA-seq data from triple-negative breast cancer patients
por: Stupnikov, Alexey, et al.
Publicado: (2015)