Cargando…
Commercial processed soy-based food product contains glycated and glycoxidated lunasin proteoforms
Nutraceuticals have been proposed to exert positive effects on human health and confer protection against many chronic diseases. A major bioactive component of soy-based foods is lunasin peptide, which has potential to exert a major impact on the health of human consumers worldwide, but the biochemi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870627/ https://www.ncbi.nlm.nih.gov/pubmed/27189269 http://dx.doi.org/10.1038/srep26106 |
Sumario: | Nutraceuticals have been proposed to exert positive effects on human health and confer protection against many chronic diseases. A major bioactive component of soy-based foods is lunasin peptide, which has potential to exert a major impact on the health of human consumers worldwide, but the biochemical features of dietary lunasin still remain poorly characterized. In this study, lunasin was purified from a soy-based food product via strong anion exchange solid phase extraction and then subjected to top-down mass spectrometry analysis that revealed in detail the molecular diversity of lunasin in processed soybean foods. We detected multiple glycated proteoforms together with potentially toxic advanced glycation end products (AGEs) derived from lunasin. In both cases, modification sites were Lys24 and Lys29 located at the helical region that shows structural homology with a conserved region of chromatin-binding proteins. The identified post-translational modifications may have an important repercussion on lunasin epigenetic regulatory capacity. Taking together, our results demonstrate the importance of proper chemical characterization of commercial processed food products to assess their impact on consumer’s health and risk of chronic diseases. |
---|