Cargando…

Impaired Mobilization of Vascular Reparative Bone Marrow Cells in Streptozotocin-Induced Diabetes but not in Leptin Receptor-Deficient db/db Mice

Diabetes is associated with impaired mobilization of bone marrow stem/progenitor cells that accelerate vascularization of ischemic areas. This study characterized mobilization of vascular reparative bone marrow progenitor cells in mouse models of diabetes. Age-matched control or streptozotocin (STZ)...

Descripción completa

Detalles Bibliográficos
Autores principales: Vasam, Goutham, Joshi, Shrinidh, Jarajapu, Yagna P. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870646/
https://www.ncbi.nlm.nih.gov/pubmed/27188595
http://dx.doi.org/10.1038/srep26131
Descripción
Sumario:Diabetes is associated with impaired mobilization of bone marrow stem/progenitor cells that accelerate vascularization of ischemic areas. This study characterized mobilization of vascular reparative bone marrow progenitor cells in mouse models of diabetes. Age-matched control or streptozotocin (STZ)-induced diabetic, and db/db mice with lean-controls were studied. Mobilization induced by G-CSF, AMD3100 or ischemia was evaluated by flow cytometric enumeration of circulating Lin(−)Sca-1(+)cKit(+) (LSK) cells, and by colony forming unit (CFU) assay. The circulating WBCs and LSKs, and CFUs were reduced in both models with a shorter duration (10–12 weeks) of diabetes compared to their respective controls. Longer duration of STZ-diabetes (≥20 weeks) induced impairment of G-CSF- or AMD3100-mobilization (P < 0.01, n = 8). In db/db mice, mobilization by G-CSF or AMD3100 was either increased or unaffected (P < 0.05, n = 6 to 8). Proliferation, migration, and ischemia-induced mobilization, of LSK cells were impaired in both models. Leptin receptor antagonist, PESLAN-1, increased G-CSF- or AMD3100-mobilization of WBCs and LSKs, compared to the untreated. Leptin increased basal WBCs, decreased basal and AMD3100-mobilized LSK cells, and had no effect on G-CSF. These results suggest that mobilopathy is apparent in STZ-diabetes but not in db/db mice. Leptin receptor antagonism would be a promising approach for reversing diabetic bone marrow mobilopathy.