Cargando…

Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images

Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Cunefare, David, Cooper, Robert F., Higgins, Brian, Katz, David F., Dubra, Alfredo, Carroll, Joseph, Farsiu, Sina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871101/
https://www.ncbi.nlm.nih.gov/pubmed/27231641
http://dx.doi.org/10.1364/BOE.7.002036
_version_ 1782432548216897536
author Cunefare, David
Cooper, Robert F.
Higgins, Brian
Katz, David F.
Dubra, Alfredo
Carroll, Joseph
Farsiu, Sina
author_facet Cunefare, David
Cooper, Robert F.
Higgins, Brian
Katz, David F.
Dubra, Alfredo
Carroll, Joseph
Farsiu, Sina
author_sort Cunefare, David
collection PubMed
description Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.
format Online
Article
Text
id pubmed-4871101
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Optical Society of America
record_format MEDLINE/PubMed
spelling pubmed-48711012016-05-26 Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images Cunefare, David Cooper, Robert F. Higgins, Brian Katz, David F. Dubra, Alfredo Carroll, Joseph Farsiu, Sina Biomed Opt Express Article Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images. Optical Society of America 2016-04-27 /pmc/articles/PMC4871101/ /pubmed/27231641 http://dx.doi.org/10.1364/BOE.7.002036 Text en © 2016 Optical Society of America
spellingShingle Article
Cunefare, David
Cooper, Robert F.
Higgins, Brian
Katz, David F.
Dubra, Alfredo
Carroll, Joseph
Farsiu, Sina
Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
title Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
title_full Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
title_fullStr Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
title_full_unstemmed Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
title_short Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
title_sort automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871101/
https://www.ncbi.nlm.nih.gov/pubmed/27231641
http://dx.doi.org/10.1364/BOE.7.002036
work_keys_str_mv AT cunefaredavid automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages
AT cooperrobertf automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages
AT higginsbrian automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages
AT katzdavidf automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages
AT dubraalfredo automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages
AT carrolljoseph automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages
AT farsiusina automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages