Cargando…
Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871101/ https://www.ncbi.nlm.nih.gov/pubmed/27231641 http://dx.doi.org/10.1364/BOE.7.002036 |
_version_ | 1782432548216897536 |
---|---|
author | Cunefare, David Cooper, Robert F. Higgins, Brian Katz, David F. Dubra, Alfredo Carroll, Joseph Farsiu, Sina |
author_facet | Cunefare, David Cooper, Robert F. Higgins, Brian Katz, David F. Dubra, Alfredo Carroll, Joseph Farsiu, Sina |
author_sort | Cunefare, David |
collection | PubMed |
description | Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images. |
format | Online Article Text |
id | pubmed-4871101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Optical Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-48711012016-05-26 Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images Cunefare, David Cooper, Robert F. Higgins, Brian Katz, David F. Dubra, Alfredo Carroll, Joseph Farsiu, Sina Biomed Opt Express Article Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images. Optical Society of America 2016-04-27 /pmc/articles/PMC4871101/ /pubmed/27231641 http://dx.doi.org/10.1364/BOE.7.002036 Text en © 2016 Optical Society of America |
spellingShingle | Article Cunefare, David Cooper, Robert F. Higgins, Brian Katz, David F. Dubra, Alfredo Carroll, Joseph Farsiu, Sina Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images |
title | Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images |
title_full | Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images |
title_fullStr | Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images |
title_full_unstemmed | Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images |
title_short | Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images |
title_sort | automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871101/ https://www.ncbi.nlm.nih.gov/pubmed/27231641 http://dx.doi.org/10.1364/BOE.7.002036 |
work_keys_str_mv | AT cunefaredavid automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages AT cooperrobertf automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages AT higginsbrian automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages AT katzdavidf automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages AT dubraalfredo automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages AT carrolljoseph automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages AT farsiusina automaticdetectionofconephotoreceptorsinsplitdetectoradaptiveopticsscanninglightophthalmoscopeimages |