Cargando…

Optimization of the Dutch Matrix Test by Random Selection of Sentences From a Preselected Subset

Matrix tests are available for speech recognition testing in many languages. For an accurate measurement, a steep psychometric function of the speech materials is required. For existing tests, it would be beneficial if it were possible to further optimize the available materials by increasing the fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Houben, Rolph, Dreschler, Wouter A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871208/
https://www.ncbi.nlm.nih.gov/pubmed/25964195
http://dx.doi.org/10.1177/2331216515583138
Descripción
Sumario:Matrix tests are available for speech recognition testing in many languages. For an accurate measurement, a steep psychometric function of the speech materials is required. For existing tests, it would be beneficial if it were possible to further optimize the available materials by increasing the function’s steepness. The objective is to show if the steepness of the psychometric function of an existing matrix test can be increased by selecting a homogeneous subset of recordings with the steepest sentence-based psychometric functions. We took data from a previous multicenter evaluation of the Dutch matrix test (45 normal-hearing listeners). Based on half of the data set, first the sentences (140 out of 311) with a similar speech reception threshold and with the steepest psychometric function (≥9.7%/dB) were selected. Subsequently, the steepness of the psychometric function for this selection was calculated from the remaining (unused) second half of the data set. The calculation showed that the slope increased from 10.2%/dB to 13.7%/dB. The resulting subset did not allow the construction of enough balanced test lists. Therefore, the measurement procedure was changed to randomly select the sentences during testing. Random selection may interfere with a representative occurrence of phonemes. However, in our material, the median phonemic occurrence remained close to that of the original test. This finding indicates that phonemic occurrence is not a critical factor. The work highlights the possibility that existing speech tests might be improved by selecting sentences with a steep psychometric function.