Cargando…

Fine-Scale Habitat Segregation between Two Ecologically Similar Top Predators

Similar, coexisting species often segregate along the spatial ecological axis. Here, we examine if two top predators (jaguars and pumas) present different fine-scale habitat use in areas of coexistence, and discuss if the observed pattern can be explained by the risk of interference competition betw...

Descripción completa

Detalles Bibliográficos
Autores principales: Palomares, Francisco, Fernández, Néstor, Roques, Severine, Chávez, Cuauhtemoc, Silveira, Leandro, Keller, Claudia, Adrados, Begoña
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871328/
https://www.ncbi.nlm.nih.gov/pubmed/27187596
http://dx.doi.org/10.1371/journal.pone.0155626
Descripción
Sumario:Similar, coexisting species often segregate along the spatial ecological axis. Here, we examine if two top predators (jaguars and pumas) present different fine-scale habitat use in areas of coexistence, and discuss if the observed pattern can be explained by the risk of interference competition between them. Interference competition theory predicts that pumas should avoid habitats or areas used by jaguars (the dominant species), and as a consequence should present more variability of niche parameters across study areas. We used non-invasive genetic sampling of faeces in 12 different areas and sensor satellite fine-scale habitat indices to answer these questions. Meta-analysis confirmed differences in fine-scale habitat use between jaguars and pumas. Furthermore, average marginality of the realized niches of pumas was more variable than those of jaguars, and tolerance (a measure of niche breadth) was on average 2.2 times higher in pumas than in jaguars, as expected under the interference competition risk hypothesis. The use of sensor satellite fine-scale habitat indices allowed the detection of subtle differences in the environmental characteristics of the habitats used by these two similar top predators, which, as a rule, until now were recorded using the same general habitat types. The detection of fine spatial segregation between these two top predators was scale-dependent.