Cargando…
Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties
We describe a Bayesian Markov chain Monte Carlo (MCMC) sampler for protein multiple sequence alignment (MSA) that, as implemented in the program GISMO and applied to large numbers of diverse sequences, is more accurate than the popular MSA programs MUSCLE, MAFFT, Clustal-Ω and Kalign. Features of GI...
Autores principales: | Neuwald, Andrew F., Altschul, Stephen F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871425/ https://www.ncbi.nlm.nih.gov/pubmed/27192614 http://dx.doi.org/10.1371/journal.pcbi.1004936 |
Ejemplares similares
-
Inferring joint sequence-structural determinants of protein functional specificity
por: Neuwald, Andrew F, et al.
Publicado: (2018) -
KalignP: Improved multiple sequence alignments using position specific gap penalties in Kalign2
por: Shu, Nanjiang, et al.
Publicado: (2011) -
Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations
por: Neuwald, Andrew F., et al.
Publicado: (2016) -
eCOMPASS: evaluative comparison of multiple protein alignments by statistical score
por: Neuwald, Andrew F, et al.
Publicado: (2021) -
Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model
por: Neuwald, Andrew F, et al.
Publicado: (2004)