Cargando…
Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth
Human neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871462/ https://www.ncbi.nlm.nih.gov/pubmed/27191593 http://dx.doi.org/10.1371/journal.pone.0155685 |
_version_ | 1782432597038596096 |
---|---|
author | Je, Sungmo Quan, Hailian Yoon, Yina Na, Yirang Kim, Bum-Joon Seok, Seung Hyeok |
author_facet | Je, Sungmo Quan, Hailian Yoon, Yina Na, Yirang Kim, Bum-Joon Seok, Seung Hyeok |
author_sort | Je, Sungmo |
collection | PubMed |
description | Human neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular traps (METs) in host defense responses against Mycobacterium massiliense (M. mass) has yet to be described. In this study, we show that M. mass, a rapid growing mycobacterium (RGM), also induces the release of METs from PMA-differentiated THP-1 cells. Intriguingly, this process is not dependent on NADPH oxidase activity, which regulates NET formation. Instead, M. mass-induced MET formation partially depends on calcium influx and requires phagocytosis of high bacterial load. The METs consist of a DNA backbone embedded with microbicidal proteins such as histone, MPO and elastase. Released METs entrap M. mass and prevent their dissemination, but do not have bactericidal activity. Instead, they result in enhanced bacterial growth. In this regard, METs were considered to provide interaction of M. mass with cells and an environment for bacterial aggregation, which may facilitate mycobacterial survival and growth. In conclusion, our results demonstrate METs as an innate defense response against M. mass infection, and suggest that extracellular traps play a multifaceted role in the interplay between host and bacteria. |
format | Online Article Text |
id | pubmed-4871462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48714622016-05-31 Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth Je, Sungmo Quan, Hailian Yoon, Yina Na, Yirang Kim, Bum-Joon Seok, Seung Hyeok PLoS One Research Article Human neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular traps (METs) in host defense responses against Mycobacterium massiliense (M. mass) has yet to be described. In this study, we show that M. mass, a rapid growing mycobacterium (RGM), also induces the release of METs from PMA-differentiated THP-1 cells. Intriguingly, this process is not dependent on NADPH oxidase activity, which regulates NET formation. Instead, M. mass-induced MET formation partially depends on calcium influx and requires phagocytosis of high bacterial load. The METs consist of a DNA backbone embedded with microbicidal proteins such as histone, MPO and elastase. Released METs entrap M. mass and prevent their dissemination, but do not have bactericidal activity. Instead, they result in enhanced bacterial growth. In this regard, METs were considered to provide interaction of M. mass with cells and an environment for bacterial aggregation, which may facilitate mycobacterial survival and growth. In conclusion, our results demonstrate METs as an innate defense response against M. mass infection, and suggest that extracellular traps play a multifaceted role in the interplay between host and bacteria. Public Library of Science 2016-05-18 /pmc/articles/PMC4871462/ /pubmed/27191593 http://dx.doi.org/10.1371/journal.pone.0155685 Text en © 2016 Je et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Je, Sungmo Quan, Hailian Yoon, Yina Na, Yirang Kim, Bum-Joon Seok, Seung Hyeok Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth |
title | Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth |
title_full | Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth |
title_fullStr | Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth |
title_full_unstemmed | Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth |
title_short | Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth |
title_sort | mycobacterium massiliense induces macrophage extracellular traps with facilitating bacterial growth |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871462/ https://www.ncbi.nlm.nih.gov/pubmed/27191593 http://dx.doi.org/10.1371/journal.pone.0155685 |
work_keys_str_mv | AT jesungmo mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT quanhailian mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT yoonyina mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT nayirang mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT kimbumjoon mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT seokseunghyeok mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth |