Cargando…

Optimized second generation CRY2/CIB dimerizers and photoactivatable Cre recombinase

Arabidopsis thaliana cryptochrome 2 (AtCRY2), a light-sensitive photosensory protein, was previously adapted for use controling protein-protein interactions through light-dependent binding to a partner protein, CIB1. While the existing CRY2/CIB dimerization system has been used extensively for optog...

Descripción completa

Detalles Bibliográficos
Autores principales: Taslimi, Amir, Zoltowski, Brian, Miranda, Jose G., Pathak, Gopal, Hughes, Robert M., Tucker, Chandra L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871718/
https://www.ncbi.nlm.nih.gov/pubmed/27065233
http://dx.doi.org/10.1038/nchembio.2063
Descripción
Sumario:Arabidopsis thaliana cryptochrome 2 (AtCRY2), a light-sensitive photosensory protein, was previously adapted for use controling protein-protein interactions through light-dependent binding to a partner protein, CIB1. While the existing CRY2/CIB dimerization system has been used extensively for optogenetic applications, some limitations exist. Here, we set out to optimize function of the CRY2/CIB system, to identify versions of CRY2/CIB that are smaller, show reduced dark interaction, and maintain longer or shorter signaling states in response to a pulse of light. We describe minimal functional CRY2 and CIB1 domains maintaining light-dependent interaction and new signaling mutations affecting AtCRY2 photocycle kinetics. The latter work implicates a α13-α14 turn motif within plant CRYs where perturbations alter signaling state lifetime. Using a long-lived L348F photocycle mutant, we engineered a second generation photoactivatable Cre recombinase, PA-Cre2.0, that shows five-fold improved dynamic range allowing robust recombination following exposure to a single, brief pulse of light.