Cargando…
Nomogram of Naive Bayesian Model for Recurrence Prediction of Breast Cancer
OBJECTIVES: Breast cancer has a high rate of recurrence, resulting in the need for aggressive treatment and close follow-up. However, previously established classification guidelines, based on expert panels or regression models, are controversial. Prediction models based on machine learning show exc...
Autores principales: | Kim, Woojae, Kim, Ku Sang, Park, Rae Woong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871850/ https://www.ncbi.nlm.nih.gov/pubmed/27200218 http://dx.doi.org/10.4258/hir.2016.22.2.89 |
Ejemplares similares
-
Development of Novel Breast Cancer Recurrence Prediction Model Using Support Vector Machine
por: Kim, Woojae, et al.
Publicado: (2012) -
A Comparison of Intensive Care Unit Mortality Prediction Models through the Use of Data Mining Techniques
por: Kim, Sujin, et al.
Publicado: (2011) -
An Automated Measurement of Ciliary Beating Frequency using a Combined Optical Flow and Peak Detection
por: Kim, Woojae, et al.
Publicado: (2011) -
External validation of IBTR! 2.0 nomogram for prediction of ipsilateral breast tumor recurrence
por: Lee, Byung Min, et al.
Publicado: (2018) -
Developing a Predictive Model for Depressive Disorders Using Stacking Ensemble and Naive Bayesian Nomogram: Using Samples Representing South Korea
por: Byeon, Haewon
Publicado: (2022)