Cargando…
Comparison of Predictive Models for the Early Diagnosis of Diabetes
OBJECTIVES: This study develops neural network models to improve the prediction of diabetes using clinical and lifestyle characteristics. Prediction models were developed using a combination of approaches and concepts. METHODS: We used memetic algorithms to update weights and to improve prediction a...
Autores principales: | Jahani, Meysam, Mahdavi, Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871851/ https://www.ncbi.nlm.nih.gov/pubmed/27200219 http://dx.doi.org/10.4258/hir.2016.22.2.95 |
Ejemplares similares
-
A comparison of artificial intelligence techniques for predicting hyperforin content in
Hypericum perforatum
L. in different ecological habitats
por: Saffariha, Maryam, et al.
Publicado: (2021) -
Effects of ethanolic extract of Ferula gummosa oleo-resin in a rat model of streptozotocin-induced diabetes
por: Jalili-Nik, Mohammad, et al.
Publicado: (2019) -
A predictive model for early diagnosis of keratoconus
por: Castro-Luna, Gracia, et al.
Publicado: (2020) -
Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers
por: Sadeghi-Avalshahr, Alireza, et al.
Publicado: (2017) -
MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer
por: Mirahmadi, Yegane, et al.
Publicado: (2021)