Cargando…

Endoplasmosis and exoplasmosis: the evolutionary principles underlying endocytosis, exocytosis, and vesicular transport

Eukaryotic cells are characterized by a multicompartmental structure with a variety of organelles. Vesicular transport between these compartments requires membrane fusion events. Based on a membrane topology view, we conclude that there are two basic mechanisms of membrane fusion, namely where the m...

Descripción completa

Detalles Bibliográficos
Autor principal: Schmid, Johannes A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871923/
https://www.ncbi.nlm.nih.gov/pubmed/27167530
http://dx.doi.org/10.1007/s10354-016-0453-2
Descripción
Sumario:Eukaryotic cells are characterized by a multicompartmental structure with a variety of organelles. Vesicular transport between these compartments requires membrane fusion events. Based on a membrane topology view, we conclude that there are two basic mechanisms of membrane fusion, namely where the membranes first come in contact with the cis-side (the plasmatic phase of the lipid bilayer) or with the trans-side (the extra-plasmatic face). We propose to designate trans-membrane fusion processes as “endoplasmosis” as they lead to uptake of a compartment into the plasmatic phase. Vice versa we suggest the term “exoplasmosis” (as already suggested in a 1964 publication) for cis-membrane fusion events, where the interior of a vesicle is released to an extraplasmatic environment (the extracellular space or the lumen of a compartment). This concept is supported by the fact that all cis- and all trans-membrane fusions, respectively, exhibit noticeable similarities implying that they evolved from two functionally different mechanisms.