Cargando…

A novel type II collagen gene mutation in a family with spondyloepiphyseal dysplasia and extensive intrafamilial phenotypic diversity

The purpose of this study was to describe a family with spondyloepiphyseal dysplasia caused by a novel type II collagen gene (COL2A1) mutation and the family’s phenotypic diversity. Clinical and radiographic examinations of skeletal dysplasia were conducted on seven affected family members across tw...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakashima, Yasuharu, Sakamoto, Yuma, Nishimura, Gen, Ikegawa, Shiro, Iwamoto, Yukihide
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871930/
https://www.ncbi.nlm.nih.gov/pubmed/27274858
http://dx.doi.org/10.1038/hgv.2016.7
Descripción
Sumario:The purpose of this study was to describe a family with spondyloepiphyseal dysplasia caused by a novel type II collagen gene (COL2A1) mutation and the family’s phenotypic diversity. Clinical and radiographic examinations of skeletal dysplasia were conducted on seven affected family members across two generations. The entire coding region of COL2A1, including the flanking intron regions, was analyzed with PCR and direct sequencing. The stature of the subjects ranged from extremely short to within normal height range. Hip deformity and advanced osteoarthritis were noted in all the subjects, ranging from severe coxa plana to mild acetabular dysplasia. Atlantoaxial subluxation combined with a hypoplastic odontoid process was found in three of the subjects. Various degrees of platyspondyly were confirmed in all subjects. Genetically, a novel COL2A1 mutation (c.1349G>C, p.Gly450Ala) was identified in all the affected family members; however, it was not present in the one unaffected family member tested. We described a family with spondyloepiphyseal dysplasia and a novel COL2A1 mutation (c.1349G>C, p.Gly450Ala). Phenotypes were diverse even among individuals with the same mutation and within the same family.