Cargando…
Is a fully wrapped SSB–DNA complex essential for Escherichia coli survival?
Escherichia coli single-stranded DNA binding protein (SSB) is an essential homotetramer that binds ssDNA and recruits multiple proteins to their sites of action during genomic maintenance. Each SSB subunit contains an N-terminal globular oligonucleotide/oligosaccharide binding fold (OB-fold) and an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872115/ https://www.ncbi.nlm.nih.gov/pubmed/27084941 http://dx.doi.org/10.1093/nar/gkw262 |
Sumario: | Escherichia coli single-stranded DNA binding protein (SSB) is an essential homotetramer that binds ssDNA and recruits multiple proteins to their sites of action during genomic maintenance. Each SSB subunit contains an N-terminal globular oligonucleotide/oligosaccharide binding fold (OB-fold) and an intrinsically disordered C-terminal domain. SSB binds ssDNA in multiple modes in vitro, including the fully wrapped (SSB)(65) and (SSB)(56) modes, in which ssDNA contacts all four OB-folds, and the highly cooperative (SSB)(35) mode, in which ssDNA contacts an average of only two OB-folds. These modes can both be populated under physiological conditions. While these different modes might be used for different functions, this has been difficult to assess. Here we used a dimeric SSB construct with two covalently linked OB-folds to disable ssDNA binding in two of the four OB-folds thus preventing formation of fully wrapped DNA complexes in vitro, although they retain a wild-type-like, salt-dependent shift in cooperative binding to ssDNA. These variants complement wild-type SSB in vivo indicating that a fully wrapped mode is not essential for function. These results do not preclude a normal function for a fully wrapped mode, but do indicate that E. coli tolerates some flexibility with regards to its SSB binding modes. |
---|