Cargando…
A brain-region-based meta-analysis method utilizing the Apriori algorithm
BACKGROUND: Brain network connectivity modeling is a crucial method for studying the brain’s cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872339/ https://www.ncbi.nlm.nih.gov/pubmed/27194281 http://dx.doi.org/10.1186/s12868-016-0257-8 |
_version_ | 1782432710152683520 |
---|---|
author | Niu, Zhendong Nie, Yaoxin Zhou, Qian Zhu, Linlin Wei, Jieyao |
author_facet | Niu, Zhendong Nie, Yaoxin Zhou, Qian Zhu, Linlin Wei, Jieyao |
author_sort | Niu, Zhendong |
collection | PubMed |
description | BACKGROUND: Brain network connectivity modeling is a crucial method for studying the brain’s cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. RESULTS: In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816–847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. CONCLUSIONS: The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis. |
format | Online Article Text |
id | pubmed-4872339 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48723392016-05-20 A brain-region-based meta-analysis method utilizing the Apriori algorithm Niu, Zhendong Nie, Yaoxin Zhou, Qian Zhu, Linlin Wei, Jieyao BMC Neurosci Methodology Article BACKGROUND: Brain network connectivity modeling is a crucial method for studying the brain’s cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. RESULTS: In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816–847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. CONCLUSIONS: The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis. BioMed Central 2016-05-18 /pmc/articles/PMC4872339/ /pubmed/27194281 http://dx.doi.org/10.1186/s12868-016-0257-8 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Niu, Zhendong Nie, Yaoxin Zhou, Qian Zhu, Linlin Wei, Jieyao A brain-region-based meta-analysis method utilizing the Apriori algorithm |
title | A brain-region-based meta-analysis method utilizing the Apriori algorithm |
title_full | A brain-region-based meta-analysis method utilizing the Apriori algorithm |
title_fullStr | A brain-region-based meta-analysis method utilizing the Apriori algorithm |
title_full_unstemmed | A brain-region-based meta-analysis method utilizing the Apriori algorithm |
title_short | A brain-region-based meta-analysis method utilizing the Apriori algorithm |
title_sort | brain-region-based meta-analysis method utilizing the apriori algorithm |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872339/ https://www.ncbi.nlm.nih.gov/pubmed/27194281 http://dx.doi.org/10.1186/s12868-016-0257-8 |
work_keys_str_mv | AT niuzhendong abrainregionbasedmetaanalysismethodutilizingtheapriorialgorithm AT nieyaoxin abrainregionbasedmetaanalysismethodutilizingtheapriorialgorithm AT zhouqian abrainregionbasedmetaanalysismethodutilizingtheapriorialgorithm AT zhulinlin abrainregionbasedmetaanalysismethodutilizingtheapriorialgorithm AT weijieyao abrainregionbasedmetaanalysismethodutilizingtheapriorialgorithm AT niuzhendong brainregionbasedmetaanalysismethodutilizingtheapriorialgorithm AT nieyaoxin brainregionbasedmetaanalysismethodutilizingtheapriorialgorithm AT zhouqian brainregionbasedmetaanalysismethodutilizingtheapriorialgorithm AT zhulinlin brainregionbasedmetaanalysismethodutilizingtheapriorialgorithm AT weijieyao brainregionbasedmetaanalysismethodutilizingtheapriorialgorithm |