Cargando…

Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation

BACKGROUND: Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. Seizure-induced TLR4/MYD88 signaling plays a critical role in activating microglia and triggering neuron apoptosis. SAHA is a histone deacetylase inhibitor that regulates gene expression by increas...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Qing-Peng, Mao, Ding-An
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872358/
https://www.ncbi.nlm.nih.gov/pubmed/27193049
http://dx.doi.org/10.1186/s12868-016-0264-9
_version_ 1782432713521758208
author Hu, Qing-Peng
Mao, Ding-An
author_facet Hu, Qing-Peng
Mao, Ding-An
author_sort Hu, Qing-Peng
collection PubMed
description BACKGROUND: Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. Seizure-induced TLR4/MYD88 signaling plays a critical role in activating microglia and triggering neuron apoptosis. SAHA is a histone deacetylase inhibitor that regulates gene expression by increasing chromatin histone acetylation. In this study, we investigated the role of SAHA in TLR4/MYD88 signaling in a rat seizure model. RESULTS: Sprague–Dawley rats with kainic acid (KA)-induced seizures were treated with SAHA. The expression of TLR4, MYD88, NF-κB P65 and IL-1β in hippocampus was detected at hour 2 and 6 and day 1, 2, and 3 post seizure. SAHA pretreatment increased seizure latency and decreased seizure scores. The expression levels of TLR4, MYD88, NF-κB and IL-1β increased significantly in both activated microglia and apoptotic neurons after KA treatment. The effects were attenuated by SAHA. Chromatin immunoprecipitation assays indicated that the H3 histone acetylation levels significantly decreased while H3K9 levels significantly increased in the KA treatment group. The H3 and H3K9 acetylation levels returned to control levels after SAHA (50 mg/kg) pretreatment. There was a positive correlation between the expression of TLR4 and the acetylation levels of H3K9. CONCLUSIONS: Histone deacetylase inhibitor SAHA can suppress seizure-induced TLR4/MYD88 signaling and inhibit TLR4 gene expression through histone acetylation regulation. This suggests that SAHA may protect against seizure-induced brain damage.
format Online
Article
Text
id pubmed-4872358
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-48723582016-05-20 Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation Hu, Qing-Peng Mao, Ding-An BMC Neurosci Research Article BACKGROUND: Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. Seizure-induced TLR4/MYD88 signaling plays a critical role in activating microglia and triggering neuron apoptosis. SAHA is a histone deacetylase inhibitor that regulates gene expression by increasing chromatin histone acetylation. In this study, we investigated the role of SAHA in TLR4/MYD88 signaling in a rat seizure model. RESULTS: Sprague–Dawley rats with kainic acid (KA)-induced seizures were treated with SAHA. The expression of TLR4, MYD88, NF-κB P65 and IL-1β in hippocampus was detected at hour 2 and 6 and day 1, 2, and 3 post seizure. SAHA pretreatment increased seizure latency and decreased seizure scores. The expression levels of TLR4, MYD88, NF-κB and IL-1β increased significantly in both activated microglia and apoptotic neurons after KA treatment. The effects were attenuated by SAHA. Chromatin immunoprecipitation assays indicated that the H3 histone acetylation levels significantly decreased while H3K9 levels significantly increased in the KA treatment group. The H3 and H3K9 acetylation levels returned to control levels after SAHA (50 mg/kg) pretreatment. There was a positive correlation between the expression of TLR4 and the acetylation levels of H3K9. CONCLUSIONS: Histone deacetylase inhibitor SAHA can suppress seizure-induced TLR4/MYD88 signaling and inhibit TLR4 gene expression through histone acetylation regulation. This suggests that SAHA may protect against seizure-induced brain damage. BioMed Central 2016-05-18 /pmc/articles/PMC4872358/ /pubmed/27193049 http://dx.doi.org/10.1186/s12868-016-0264-9 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Hu, Qing-Peng
Mao, Ding-An
Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation
title Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation
title_full Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation
title_fullStr Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation
title_full_unstemmed Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation
title_short Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation
title_sort histone deacetylase inhibitor saha attenuates post-seizure hippocampal microglia tlr4/myd88 signaling and inhibits tlr4 gene expression via histone acetylation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872358/
https://www.ncbi.nlm.nih.gov/pubmed/27193049
http://dx.doi.org/10.1186/s12868-016-0264-9
work_keys_str_mv AT huqingpeng histonedeacetylaseinhibitorsahaattenuatespostseizurehippocampalmicrogliatlr4myd88signalingandinhibitstlr4geneexpressionviahistoneacetylation
AT maodingan histonedeacetylaseinhibitorsahaattenuatespostseizurehippocampalmicrogliatlr4myd88signalingandinhibitstlr4geneexpressionviahistoneacetylation